Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurosci ; 41(17): 3764-3776, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33731449

ABSTRACT

The axon initial segment (AIS) is a specialized neuronal compartment in which synaptic input is converted into action potential (AP) output. This process is supported by a diverse complement of sodium, potassium, and calcium channels (CaV). Different classes of sodium and potassium channels are scaffolded at specific sites within the AIS, conferring unique functions, but how calcium channels are functionally distributed within the AIS is unclear. Here, we use conventional two-photon laser scanning and diffraction-limited, high-speed spot two-photon imaging to resolve AP-evoked calcium dynamics in the AIS with high spatiotemporal resolution. In mouse layer 5 prefrontal pyramidal neurons, calcium influx was mediated by a mix of CaV2 and CaV3 channels that differentially localized to discrete regions. CaV3 functionally localized to produce nanodomain hotspots of calcium influx that coupled to ryanodine-sensitive stores, whereas CaV2 localized to non-hotspot regions. Thus, different pools of CaVs appear to play distinct roles in AIS function.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is the site where synaptic input is transformed into action potential (AP) output. It achieves this function through a diverse complement of sodium, potassium, and calcium channels (CaV). While the localization and function of sodium channels and potassium channels at the AIS is well described, less is known about the functional distribution of CaVs. We used high-speed two-photon imaging to understand activity-dependent calcium dynamics in the AIS of mouse neocortical pyramidal neurons. Surprisingly, we found that calcium influx occurred in two distinct domains: CaV3 generates hotspot regions of calcium influx coupled to calcium stores, whereas CaV2 channels underlie diffuse calcium influx between hotspots. Therefore, different CaV classes localize to distinct AIS subdomains, possibly regulating distinct cellular processes.


Subject(s)
Axon Initial Segment/physiology , Axon Initial Segment/ultrastructure , Calcium Channels/physiology , Calcium Signaling/physiology , Action Potentials/physiology , Animals , Axons , Caveolin 2/drug effects , Caveolin 2/physiology , Caveolin 3/drug effects , Caveolin 3/physiology , Female , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects
2.
Elife ; 92020 11 06.
Article in English | MEDLINE | ID: mdl-33155545

ABSTRACT

Many genes have been linked to autism. However, it remains unclear what long-term changes in neural circuitry result from disruptions in these genes, and how these circuit changes might contribute to abnormal behaviors. To address these questions, we studied behavior and physiology in mice heterozygous for Pogz, a high confidence autism gene. Pogz+/- mice exhibit reduced anxiety-related avoidance in the elevated plus maze (EPM). Theta-frequency communication between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) is known to be necessary for normal avoidance in the EPM. We found deficient theta-frequency synchronization between the vHPC and mPFC in vivo. When we examined vHPC-mPFC communication at higher resolution, vHPC input onto prefrontal GABAergic interneurons was specifically disrupted, whereas input onto pyramidal neurons remained intact. These findings illustrate how the loss of a high confidence autism gene can impair long-range communication by causing inhibitory circuit dysfunction within pathways important for specific behaviors.


Subject(s)
Anxiety/genetics , Autistic Disorder/genetics , Transposases/genetics , Animals , Anxiety/physiopathology , Autistic Disorder/physiopathology , Avoidance Learning , Communication , Female , Heterozygote , Hippocampus/physiopathology , Interneurons , Male , Mice , Neurosciences , Prefrontal Cortex/physiopathology , Pyramidal Cells , Theta Rhythm , Transposases/metabolism
3.
Neuron ; 102(6): 1223-1234.e4, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31053407

ABSTRACT

Inhibitory interneurons expressing vasoactive intestinal polypeptide (VIP) are known to disinhibit cortical neurons. However, it is unclear how disinhibition, occurring at the single-cell level, interacts with network-level patterns of activity to shape complex behaviors. To address this, we examined the role of prefrontal VIP interneurons in a widely studied mouse behavior: deciding whether to explore or avoid the open arms of an elevated plus maze. VIP interneuron activity increases in the open arms and disinhibits prefrontal responses to hippocampal inputs, which are known to transmit signals related to open arm avoidance. Indeed, inhibiting VIP interneurons disrupts network-level representations of the open arms and decreases open arm avoidance specifically when hippocampal-prefrontal theta synchrony is strong. Thus, VIP interneurons effectively gate the ability of hippocampal input to generate prefrontal representations, which drive avoidance behavior. This shows how VIP interneurons enable cortical circuits to integrate specific inputs into network-level representations that guide complex behaviors. VIDEO ABSTRACT.


Subject(s)
Avoidance Learning/physiology , Hippocampus/physiology , Interneurons/physiology , Prefrontal Cortex/physiology , Animals , Anxiety/physiopathology , Exploratory Behavior/physiology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Interneurons/metabolism , Mice , Neural Pathways/physiology , Photometry , Theta Rhythm/physiology , Vasoactive Intestinal Peptide/metabolism
4.
Nat Protoc ; 7(1): 171-92, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22222791

ABSTRACT

Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas sp. The DNA-binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within 1 week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using quantitative reverse-transcription PCR and Surveyor nuclease, respectively. The TALE toolbox described here will enable a broad range of biological applications.


Subject(s)
Genetic Engineering/methods , Genomics/methods , Transcription Factors/genetics , Xanthomonas/genetics , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Tandem Repeat Sequences , Transcription Factors/chemistry , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...