Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
J Immunol ; 213(2): 214-225, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38829123

ABSTRACT

The interactions between chemokines and their receptors, particularly in the context of inflammation, are complex, with individual receptors binding multiple ligands and individual ligands interacting with multiple receptors. In addition, there are numerous reports of simultaneous coexpression of multiple inflammatory chemokine receptors on individual inflammatory leukocyte subtypes. Overall, this has previously been interpreted as redundancy and proposed as a protective mechanism to ensure that the inflammatory response is robust. By contrast, we have hypothesized that the system is not redundant but exquisitely subtle. Our interests relate to the receptors CCR1, CCR2, CCR3, and CCR5, which, together, regulate nonneutrophilic myeloid cell recruitment to inflammatory sites. In this study, we demonstrate that although most murine monocytes exclusively express CCR2, there is a small subpopulation that is expanded during inflammation and coexpresses CCR1 and CCR2. Combinations of transcript and functional analysis demonstrate that this is not redundant expression and that coexpression of CCR1 and CCR2 marks a phenotypically distinct population of monocytes characterized by expression of genes otherwise typically associated with neutrophils. Single-cell RNA sequencing confirms this as a monodisperse population of atypical monocytes. This monocytic population has previously been described as having immunosuppressive activity. Overall, our data confirm combinatorial chemokine receptor expression by a subpopulation of monocytes but demonstrate that this is not redundant expression and marks a discrete monocytic population.


Subject(s)
Monocytes , Receptors, CCR1 , Receptors, CCR2 , Receptors, CCR1/genetics , Receptors, CCR1/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Monocytes/immunology , Monocytes/metabolism , Animals , Mice , Mice, Inbred C57BL , Inflammation/immunology
2.
Clin Auton Res ; 33(6): 767-775, 2023 12.
Article in English | MEDLINE | ID: mdl-37943335

ABSTRACT

PURPOSE: Acute decompensated heart failure (ADHF) is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown whether neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level tragus stimulation on inflammation and oxidative stress in ADHF. METHODS: Nineteen patients with ejection fraction < 40% were randomized to neuromodulation 4 h twice daily (6-10 a.m. and 6-10 p.m.) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using a dihydrodichlorofluorescein probe test (expressed as fluorescein units). RESULTS: Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum interleukin-6 levels (-78% vs. -9%; p = 0.012). Similarly, neuromodulation led to a reduction of endothelial cell oxidative stress in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant differences in heart rate, blood pressure, or renal function were noted between the two groups. CONCLUSION: In this proof-of-concept pilot study, in acute decompensated heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of coronary endothelial cellular oxidative stress. CLINICAL TRIAL REGISTRATION: NCT02898181.


Subject(s)
Endothelial Cells , Heart Failure , Humans , Pilot Projects , Heart Failure/therapy , Inflammation/therapy , Oxidative Stress
3.
BMJ Glob Health ; 8(Suppl 9)2023 10.
Article in English | MEDLINE | ID: mdl-37914183

ABSTRACT

Secondary prevention of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) involves continuous antimicrobial prophylaxis among affected individuals and is recognised as a cornerstone of public health programmes that address these conditions. However, several important scientific issues around the secondary prevention paradigm remain unresolved. This report details research priorities for secondary prevention that were developed as part of a workshop convened by the US National Heart, Lung, and Blood Institute in November 2021. These span basic, translational, clinical and population science research disciplines and are built on four pillars. First, we need a better understanding of RHD epidemiology to guide programmes, policies, and clinical and public health practice. Second, we need better strategies to find and diagnose people affected by ARF and RHD. Third, we urgently need better tools to manage acute RF and slow the progression of RHD. Fourth, new and existing technologies for these conditions need to be better integrated into healthcare systems. We intend for this document to be a reference point for research organisations and research sponsors interested in contributing to the growing scientific community focused on RHD prevention and control.


Subject(s)
Rheumatic Fever , Rheumatic Heart Disease , United States , Humans , Rheumatic Fever/prevention & control , Rheumatic Fever/complications , Rheumatic Fever/diagnosis , Rheumatic Heart Disease/prevention & control , Rheumatic Heart Disease/diagnosis , Secondary Prevention , National Heart, Lung, and Blood Institute (U.S.) , Research Design
4.
BMJ Glob Health ; 8(Suppl 9)2023 10.
Article in English | MEDLINE | ID: mdl-37914182

ABSTRACT

Although entirely preventable, rheumatic heart disease (RHD), a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low-income and middle-income countries (LMICs) and rural, remote, marginalised and disenfranchised populations within high-income countries. In late 2021, the National Heart, Lung, and Blood Institute convened a workshop to explore the current state of science, to identify basic science and clinical research priorities to support RHD eradication efforts worldwide. This was done through the inclusion of multidisciplinary global experts, including cardiovascular and non-cardiovascular specialists as well as health policy and health economics experts, many of whom also represented or closely worked with patient-family organisations and local governments. This report summarises findings from one of the four working groups, the Tertiary Prevention Working Group, that was charged with assessing the management of late complications of RHD, including surgical interventions for patients with RHD. Due to the high prevalence of RHD in LMICs, particular emphasis was made on gaining a better understanding of needs in the field from the perspectives of the patient, community, provider, health system and policy-maker. We outline priorities to support the development, and implementation of accessible, affordable and sustainable interventions in low-resource settings to manage RHD and related complications. These priorities and other interventions need to be adapted to and driven by local contexts and integrated into health systems to best meet the needs of local communities.


Subject(s)
Rheumatic Heart Disease , United States , Humans , Rheumatic Heart Disease/epidemiology , Rheumatic Heart Disease/prevention & control , Tertiary Prevention , National Heart, Lung, and Blood Institute (U.S.)
5.
Res Sq ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37790298

ABSTRACT

Purpose: Acute decompensated heart failure is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown if neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level Tragus stimulation on inflammation and oxidative stress in ADHF. Methods: 19 patients with ejection fraction < 40% were randomized to neuromodulation- 4 hours twice daily (6 AM-10 AM and 6 PM-10 PM) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using dihydrodichlorofluorescein probe test (expressed as fluorescein units). Results: Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum Interleukin-6 levels (-78% vs -9%; p = 0.012). Similarly, neuromodulation led to reduction of endothelial cell oxidative stress, in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant difference in heart rate, blood pressure or renal function were noted between the two groups. Conclusion: In this proof-of-concept pilot study, in acute systolic heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of cellular oxidative stress. Clinical trial: NCT02898181.

7.
Vaccines (Basel) ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37766180

ABSTRACT

Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.

8.
Psychiatr Clin North Am ; 46(1): 69-88, 2023 03.
Article in English | MEDLINE | ID: mdl-36740356

ABSTRACT

Sydenham chorea (SC), pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS) are postinfectious neuroinflammatory diseases that involve the basal ganglia and have obsessive-compulsive disorder as a major manifestation. As is true for many childhood rheumatological diseases and neuroinflammatory diseases, SC, PANDAS and PANS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. Research on the treatment of these disorders depend on three complementary modes of intervention including: treating the symptoms, treating the source of inflammation, and treating disturbances of the immune system. Future studies should aim to integrate neuroimaging, inflammation, immunogenetic, and clinical data (noting the stage in the clinical course) to increase our understanding and treatment of SC, PANDAS, PANS, and all other postinfectious/immune-mediated behavioral disorders.


Subject(s)
Autoimmune Diseases , Chorea , Obsessive-Compulsive Disorder , Streptococcal Infections , Child , Humans , Neuroinflammatory Diseases , Chorea/complications , Chorea/diagnosis , Autoimmune Diseases/complications , Autoimmune Diseases/diagnosis , Autoimmune Diseases/drug therapy , Obsessive-Compulsive Disorder/complications , Streptococcal Infections/complications , Streptococcal Infections/diagnosis , Streptococcal Infections/drug therapy , Inflammation/complications
9.
J Peripher Nerv Syst ; 28(1): 17-31, 2023 03.
Article in English | MEDLINE | ID: mdl-36710500

ABSTRACT

The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins  and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.


Subject(s)
Guillain-Barre Syndrome , Humans , Mice , Animals , Calcium , Calpain , Axons , Autoantibodies
10.
J Peripher Nerv Syst ; 28(1): 4-16, 2023 03.
Article in English | MEDLINE | ID: mdl-36335586

ABSTRACT

Axon degeneration accounts for the poor clinical outcome in Guillain-Barré syndrome (GBS), yet no treatments target this key pathogenic stage. Animal models demonstrate anti-ganglioside antibodies (AGAb) induce axolemmal complement pore formation through which calcium flux activates the intra-axonal calcium-dependent proteases, calpains. We previously showed protection of axonal components using soluble calpain inhibitors in ex vivo GBS mouse models, and herein, we assess the potential of axonally-restricted calpain inhibition as a neuroprotective therapy operating in vivo. Using transgenic mice that over-express the endogenous human calpain inhibitor calpastatin (hCAST) neuronally, we assessed distal motor nerve integrity in our established GBS models. We induced immune-mediated injury with monoclonal AGAb plus a source of human complement. The calpain substrates neurofilament and AnkyrinG, nerve structural proteins, were assessed by immunolabelling and in the case of neurofilament, by single-molecule arrays (Simoa). As the distal intramuscular portion of the phrenic nerve is prominently targeted in our in vivo model, respiratory function was assessed by whole-body plethysmography as the functional output in the acute and extended models. hCAST expression protects distal nerve structural integrity both ex and in vivo, as shown by attenuation of neurofilament breakdown by immunolabelling and Simoa. In an extended in vivo model, while mice still initially undergo respiratory distress owing to acute conduction failure, the recovery phase was accelerated by hCAST expression. Axonal calpain inhibition can protect the axonal integrity of the nerve in an in vivo GBS paradigm and hasten recovery. These studies reinforce the strong justification for developing further animal and human clinical studies using exogenous calpain inhibitors.


Subject(s)
Guillain-Barre Syndrome , Mice , Humans , Animals , Calpain/metabolism , Calcium/metabolism , Axons/pathology , Mice, Transgenic
12.
BMJ Glob Health ; 8(Suppl 9)2023 12 12.
Article in English | MEDLINE | ID: mdl-38164699

ABSTRACT

Streptococcus pyogenes, also known as group A streptococcus (StrepA), is a bacterium that causes a range of human diseases, including pharyngitis, impetigo, invasive infections, and post-infection immune sequelae such as rheumatic fever and rheumatic heart disease. StrepA infections cause some of the highest burden of disease and death in mostly young populations in low-resource settings. Despite decades of effort, there is still no licensed StrepA vaccine, which if developed, could be a cost-effective way to reduce the incidence of disease. Several challenges, including technical and regulatory hurdles, safety concerns and a lack of investment have hindered StrepA vaccine development. Barriers to developing a StrepA vaccine must be overcome in the future by prioritising key areas of research including greater understanding of StrepA immunobiology and autoimmunity risk, better animal models that mimic human disease, expanding the StrepA vaccine pipeline and supporting vaccine clinical trials. The development of a StrepA vaccine is a complex and challenging process that requires significant resources and investment. Given the global burden of StrepA infections and the potential for a vaccine to save lives and livelihoods, StrepA vaccine development is an area of research that deserves considerable support. This report summarises the findings of the Primordial Prevention Working Group-VAX, which was convened in November 2021 by the National Heart, Lung, and Blood Institute. The focus of this report is to identify research gaps within the current StrepA vaccine landscape and find opportunities and develop priorities to promote the rapid and successful advancement of StrepA vaccines.


Subject(s)
Rheumatic Fever , Rheumatic Heart Disease , Streptococcal Infections , Streptococcal Vaccines , Animals , Humans , Rheumatic Fever/prevention & control , Rheumatic Fever/drug therapy , Rheumatic Fever/epidemiology , Rheumatic Heart Disease/prevention & control , Rheumatic Heart Disease/complications , Rheumatic Heart Disease/drug therapy , Streptococcal Infections/prevention & control , Streptococcal Infections/complications , Streptococcal Infections/epidemiology , Streptococcus pyogenes , Streptococcal Vaccines/therapeutic use , Lung
13.
Brain Commun ; 4(6): fcac306, 2022.
Article in English | MEDLINE | ID: mdl-36523267

ABSTRACT

The involvement of the complement pathway in Guillain-Barré syndrome pathogenesis has been demonstrated in both patient biosamples and animal models. One proposed mechanism is that anti-ganglioside antibodies mediate neural membrane injury through the activation of complement and the formation of membrane attack complex pores, thereby allowing the uncontrolled influx of ions, including calcium, intracellularly. Calcium influx activates the calcium-dependent protease calpain, leading to the cleavage of neural cytoskeletal and transmembrane proteins and contributing to subsequent functional failure. Complement inhibition has been demonstrated to provide effective protection from injury in anti-ganglioside antibody-mediated mouse models of axonal variants of Guillain-Barré syndrome; however, the role of complement in the pathogenesis of demyelinating variants has yet to be established. Thus, it is currently unknown whether complement inhibition would be an effective therapeutic for Guillain-Barré syndrome patients with injuries to the Schwann cell membrane. To address this, we recently developed a mouse model whereby the Schwann cell membrane was selectively targeted with an anti-GM1 antibody resulting in significant disruption to the axo-glial junction and cytoplasmic paranodal loops, presenting as conduction block. Herein, we utilize this Schwann cell nodal membrane injury model to determine the relevance of inhibiting complement activation. We addressed the early complement component C2 as the therapeutic target within the complement cascade by using the anti-C2 humanized monoclonal antibody, ARGX-117. This anti-C2 antibody blocks the formation of C3 convertase, specifically inhibiting the classical and lectin complement pathways and preventing the production of downstream harmful anaphylatoxins (C3a and C5a) and membrane attack complexes. Here, we demonstrate that C2 inhibition significantly attenuates injury to paranodal proteins at the node of Ranvier and improves respiratory function in ex vivo and in vivo Schwann cell nodal membrane injury models. In parallel studies, C2 inhibition also protects axonal integrity in our well-established model of acute motor axonal neuropathy mediated by both mouse and human anti-GM1 antibodies. These data demonstrate that complement inhibition prevents injury in a Schwann cell nodal membrane injury model, which is representative of neuropathies associated with anti-GM1 antibodies, including Guillain-Barré syndrome and multifocal motor neuropathy. This outcome suggests that both the motor axonal and demyelinating variants of Guillain-Barré syndrome should be included in future complement inhibition clinical trials.

14.
J Clin Med ; 11(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36233593

ABSTRACT

The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets. A new priority is the investigation of the relationship between social determinants of health (SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis. The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.

15.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35671105

ABSTRACT

In Guillain-Barré syndrome (GBS), both axonal and demyelinating variants can be mediated by complement-fixing anti-GM1 ganglioside autoantibodies that target peripheral nerve axonal and Schwann cell (SC) membranes, respectively. Critically, the extent of axonal degeneration in both variants dictates long-term outcome. The differing pathomechanisms underlying direct axonal injury and the secondary bystander axonal degeneration following SC injury are unresolved. To investigate this, we generated glycosyltransferase-disrupted transgenic mice that express GM1 ganglioside either exclusively in neurons [GalNAcT-/--Tg(neuronal)] or glia [GalNAcT-/--Tg(glial)], thereby allowing anti-GM1 antibodies to solely target GM1 in either axonal or SC membranes, respectively. Myelinated-axon integrity in distal motor nerves was studied in transgenic mice exposed to anti-GM1 antibody and complement in ex vivo and in vivo injury paradigms. Axonal targeting induced catastrophic acute axonal disruption, as expected. When mice with GM1 in SC membranes were targeted, acute disruption of perisynaptic glia and SC membranes at nodes of Ranvier (NoRs) occurred. Following glial injury, axonal disruption at NoRs also developed subacutely, progressing to secondary axonal degeneration. These models differentiate the distinctly different axonopathic pathways under axonal and glial membrane targeting conditions, and provide insights into primary and secondary axonal injury, currently a major unsolved area in GBS research.


Subject(s)
Gangliosides , Guillain-Barre Syndrome , Animals , Autoantibodies , Disease Models, Animal , G(M1) Ganglioside , Guillain-Barre Syndrome/genetics , Mice , Mice, Transgenic , Schwann Cells
16.
Exp Neurol ; 355: 114127, 2022 09.
Article in English | MEDLINE | ID: mdl-35640716

ABSTRACT

The acute motor axonal variant of Guillain-Barré syndrome is associated with the attack of motor axons by anti-ganglioside antibodies which activate complement on the axonal plasma membrane. Animal models have indirectly implicated complement pore-mediated calcium influx as a trigger of axonal damage, through the activation of the protease calpain. However, this calcium influx has never been imaged directly. Herein we describe a method to detect changes in intra-axonal calcium in an ex vivo mouse model of axonal Guillain-Barré syndrome and describe the influence of calcium on axonal injury and the effects of calpain inhibition on axonal outcome. Using ex vivo nerve-muscle explants from Thy1-TNXXL mice which axonally express a genetically encoded calcium indicator, we studied the effect of the binding and activation of complement by an anti-GD1b ganglioside antibody which targets the motor axon. Using live multiphoton imaging, we found that a wave of calcium influx extends retrogradely from the motor nerve terminal as far back as the large bundles within the muscle explant. Despite terminal complement pores being detectable only at the motor nerve terminal and, to a lesser degree, the most distal node of Ranvier, disruption of axonal proteins occurred at more proximal sites implicating the intra-axonal calcium wave. Morphological analysis indicated two different types of calcium-induced changes: acutely, distal axons showed swelling and breakdown at sites where complement pores were present. Distally, in areas of raised calcium which lacked detectable complement pores, axons developed a spindly, vacuolated appearance suggestive of early signs of degeneration. All morphological changes were prevented with treatment with a calpain inhibitor. This is the first investigation of axonal calcium dynamics in a mouse model of Guillain-Barré syndrome and demonstrates the proximal reach of calcium influx following an injury which is confined to the most distal parts of the motor axon. We also demonstrate that calpain inhibition remains a promising candidate for both acute and sub-acute consequences of calcium-induced calpain activation.


Subject(s)
Calcium , Guillain-Barre Syndrome , Animals , Axons , Calpain , Complement System Proteins , Disease Models, Animal , Gangliosides , Mice
17.
Front Cardiovasc Med ; 9: 919700, 2022.
Article in English | MEDLINE | ID: mdl-36815140

ABSTRACT

Antecedent group A streptococcal pharyngitis is a well-established cause of acute rheumatic fever (ARF) where rheumatic valvular heart disease (RHD) and Sydenham chorea (SC) are major manifestations. In ARF, crossreactive antibodies and T cells respond to streptococcal antigens, group A carbohydrate, N-acetyl-ß-D-glucosamine (GlcNAc), and M protein, respectively, and through molecular mimicry target heart and brain tissues. In this translational human study, we further address our hypothesis regarding specific pathogenic humoral and cellular immune mechanisms leading to streptococcal sequelae in a small pilot study. The aims of the study were to (1) better understand specific mechanisms of pathogenesis in ARF, (2) identify a potential early biomarker of ARF, (3) determine immunoglobulin G (IgG) subclasses directed against GlcNAc, the immunodominant epitope of the group A carbohydrate, by reaction of ARF serum IgG with GlcNAc, M protein, and human neuronal cells (SK-N-SH), and (4) determine IgG subclasses deposited on heart tissues from RHD. In 10 pediatric patients with RHD and 6 pediatric patients with SC, the serum IgG2 subclass reacted significantly with GlcNAc, and distinguished ARF from 7 pediatric patients with uncomplicated pharyngitis. Three pediatric patients who demonstrated only polymigrating arthritis, a major manifestation of ARF and part of the Jones criteria for diagnosis, lacked the elevated IgG2 subclass GlcNAc-specific reactivity. In SC, the GlcNAc-specific IgG2 subclass in cerebrospinal fluid (CSF) selectively targeted human neuronal cells as well as GlcNAc in the ELISA. In rheumatic carditis, the IgG2 subclass preferentially and strongly deposited in valve tissues (n = 4) despite elevated concentrations of IgG1 and IgG3 in RHD sera as detected by ELISA to group A streptococcal M protein. Although our human study of ARF includes a very small limited sample set, our novel research findings suggest a strong IgG2 autoantibody response against GlcNAc in RHD and SC, which targeted heart valves and neuronal cells. Cardiac IgG2 deposition was identified with an associated IL-17A/IFN-γ cooperative signature in RHD tissue which displayed both IgG2 deposition and cellular infiltrates demonstrating these cytokines simultaneously. GlcNAc-specific IgG2 may be an important autoantibody in initial stages of the pathogenesis of group A streptococcal sequelae, and future studies will determine if it can serve as a biomarker for risk of RHD and SC or early diagnosis of ARF.

18.
Front Cardiovasc Med ; 9: 1073814, 2022.
Article in English | MEDLINE | ID: mdl-36741845

ABSTRACT

Aims: The goal of this study was to determine whether sex and age differences exist for soluble ST2 (sST2) for several cardiovascular diseases (CVDs). Methods: We examined sST2 levels using an ELISA kit for myocarditis (n = 303), cardiomyopathy (n = 293), coronary artery disease (CAD) (n = 239), myocardial infarct (MI) (n = 159), and congestive heart failure (CHF) (n = 286) and compared them to controls that did not have CVDs (n = 234). Results: Myocarditis occurred in this study in relatively young patients around age 40 while the other CVDs occurred more often in older individuals around age 60. We observed a sex difference in sST2 by age only in myocarditis patients (men aged 38, women 46, p = 0.0002), but not for other CVDs. Sera sST2 levels were significantly elevated compared to age-matched controls for all CVDs: myocarditis (p ≤ 0.0001), cardiomyopathy (p = 0.0009), CAD (p = 0.03), MI (p = 0.034), and CHF (p < 0.0001) driven by elevated sST2 levels in females for all CVDs except myocarditis, which was elevated in both females (p = 0.002) and males (p ≤ 0.0001). Sex differences in sST2 levels were found for myocarditis and cardiomyopathy but no other CVDs and were higher in males (myocarditis p = 0.0035; cardiomyopathy p = 0.0047). sST2 levels were higher in women with myocarditis over 50 years of age compared to men (p = 0.0004) or women under 50 years of age (p = 0.015). In cardiomyopathy and MI patients, men over 50 had significantly higher levels of sST2 than women (p = 0.012 and p = 0.043, respectively) but sex and age differences were not detected in other CVDs. However, women with cardiomyopathy that experienced early menopause had higher sST2 levels than those who underwent menopause at a natural age range (p = 0.02). Conclusion: We found that sex and age differences in sera sST2 exist for myocarditis, cardiomyopathy, and MI, but were not observed in other CVDs including CAD and CHF. These initial findings in patients with self-reported CVDs indicate that more research is needed into sex and age differences in sST2 levels in individual CVDs.

19.
Front Psychiatry ; 11: 564, 2020.
Article in English | MEDLINE | ID: mdl-32670106

ABSTRACT

Movement, behavioral, and neuropsychiatric disorders in children have been linked to infections and a group of anti-neuronal autoantibodies, implying dopamine receptor-mediated encephalitis within the basal ganglia. The purpose of this study was to determine if anti-neuronal biomarkers, when used as a group, confirmed the acute disease in Sydenham chorea (SC) and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS). IgG autoantibodies against four neuronal autoantigens (tubulin, lysoganglioside GM1, and dopamine receptors D1 and D2) were detected in SC sera (N=8), sera and/or cerebrospinal fluid (CSF) from two groups of PANDAS cases (N=25 first group and N=35 second group), sera from Tourette's syndrome (N=18), obsessive-compulsive disorder (N=25), attention deficit hyperactivity disorder (N=18), and healthy controls (N=28) by direct enzyme-linked immunosorbent assay (ELISA). IgG specific for neuronal autoantigens was significantly elevated during the acute symptomatic phase, and the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) pathway was significantly elevated in human neuronal cells. Five assays confirmed the disease in SC and in two groups of children with PANDAS. In 35 acute onset PANDAS patients, 32 sera (91.4%) were positive for one or more of the anti-neuronal autoantibodies compared with 9 of 28 healthy controls (32.1%, p<0.0001). Importantly, CSF of 32 (91.4%) PANDAS patients had one or more detectable anti-neuronal autoantibody titers and CaMKII activation. Among healthy control subjects with elevated serum autoantibody titers for individual antigens, none (0%) were positively associated with elevated positive CaMKII activation, which was a striking contrast to the sera of PANDAS subjects, who had 76-89% positive association with elevated individual autoantibody titers and positive CaMKII activity. At 6 months follow-up, symptoms improved for more than 80% of PANDAS subjects, and serum autoantibody titers also significantly decreased. Results reported herein and previously published studies in our laboratory suggest the antibody biomarkers may be a useful adjunct to clinical diagnosis of SC, PANDAS, and related disorders and are the first known group of autoantibodies detecting dopamine receptor-mediated encephalitis in children.

20.
J Peripher Nerv Syst ; 25(2): 143-151, 2020 06.
Article in English | MEDLINE | ID: mdl-32250537

ABSTRACT

In mouse models of acute motor axonal neuropathy, anti-ganglioside antibodies (AGAbs) bind to motor axons, notably the distal nerve, and activate the complement cascade. While complement activation is well studied in this model, the role of inflammatory cells is unknown. Herein we aimed to investigate the contribution of phagocytic cells including macrophages, neutrophils and perisynaptic Schwann cells (pSCs) to distal nerve pathology. To observe this, we first created a subacute injury model of sufficient duration to allow inflammatory cell recruitment. Mice were injected intraperitoneally with an anti-GD1b monoclonal antibody that binds strongly to mouse motor nerve axons. Subsequently, mice received normal human serum as a source of complement. Dosing was titrated to allow humane survival of mice over a period of 3 days, yet still induce the characteristic neurological impairment. Behaviour and pathology were assessed in vivo using whole-body plethysmography and post-sacrifice by immunofluorescence and flow cytometry. ex vivo nerve-muscle preparations were used to investigate the acute phagocytic role of pSCs following distal nerve injury. Following complement activation at distal intramuscular nerve sites in the diaphragm macrophage localisation or numbers are not altered, nor do they shift to a pro- or anti-inflammatory phenotype. Similarly, neutrophils are not significantly recruited. Instead, ex vivo nerve-muscle preparations exposed to AGAb plus complement reveal that pSCs rapidly become phagocytic and engulf axonal debris. These data suggest that pSCs, rather than inflammatory cells, are the major cellular vehicle for axonal debris clearance following distal nerve injury, in contrast to larger nerve bundles where macrophage-mediated clearance predominates.


Subject(s)
Antibodies, Monoclonal/pharmacology , Gangliosides/immunology , Guillain-Barre Syndrome , Motor Neurons , Neuromuscular Junction , Phagocytosis/physiology , Presynaptic Terminals , Schwann Cells/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Behavior, Animal/physiology , Complement Activation/immunology , Disease Models, Animal , Female , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/pathology , Humans , Male , Mice , Mice, Transgenic , Motor Neurons/immunology , Motor Neurons/pathology , Neuromuscular Junction/immunology , Neuromuscular Junction/pathology , Presynaptic Terminals/immunology , Presynaptic Terminals/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...