Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992676

ABSTRACT

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

2.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723027

ABSTRACT

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Subject(s)
Coloring Agents , DNA , DNA/chemistry , Carbocyanines/chemistry , DNA, Cruciform
3.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36268205

ABSTRACT

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

4.
ACS Nano ; 16(10): 16260-16270, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36223545

ABSTRACT

Bilayers of 2D materials offer opportunities for creating devices with tunable electronic, optical, and mechanical properties. In van der Waals heterostructures (vdWHs) where the constituent monolayers have different lattice constants, a moiré superlattice forms with a length scale larger than the lattice constant of either constituent material regardless of twist angle. Here, we report the appearance of moiré Raman modes from nearly aligned WSe2-WS2 vdWHs in the range of 240-260 cm-1, which are absent in both monolayers and homobilayers of WSe2 and WS2 and in largely misaligned WSe2-WS2 vdWHs. Using first-principles calculations and geometric arguments, we show that these moiré Raman modes are a consequence of the large moiré length scale, which results in zone-folded phonon modes that are Raman active. These modes are sensitive to changes in twist angle, but notably, they occur at identical frequencies for a given small twist angle away from either the 0-degree or 60-degree aligned heterostructure. Our measurements also show a strong Raman intensity modulation in the frequency range of interest, with near 0 and near 60-degree vdWHs exhibiting a markedly different dependence on excitation energy. In near 0-degree aligned WSe2-WS2 vdWHs, a nearly complete suppression of both the moiré Raman modes and the WSe2 A1g Raman mode (∼250 cm-1) is observed when exciting with a 532 nm CW laser at room temperature. Temperature-dependent reflectance contrast measurements demonstrate the significant Raman intensity modulation arises from resonant Raman effects.

5.
J Phys Chem Lett ; 13(12): 2782-2791, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35319215

ABSTRACT

Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.


Subject(s)
DNA , Fluorescent Dyes , DNA/chemistry , DNA Replication , Energy Transfer , Fluorescent Dyes/chemistry , Spectrum Analysis
6.
J Phys Chem A ; 125(44): 9632-9644, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34709821

ABSTRACT

Structural DNA nanotechnology is a promising approach to create chromophore networks with modular structures and Hamiltonians to control the material's functions. The functional behaviors of these systems depend on the interactions of the chromophores' vibronic states, as well as interactions with their environment. To optimize their functions, it is necessary to characterize the chromophore network's structural and energetic properties, including the electronic delocalization in some cases. In this study, parameters of interest are deduced in DNA-scaffolded Cyanine 3 and Cyanine 5 dimers. The methods include steady-state optical measurements, physical modeling, and a genetic algorithm approach. The parameters include the chromophore network's vibronic Hamiltonian, molecular positions, transition dipole orientations, and environmentally induced energy broadening. Additionally, the study uses temperature-dependent optical measurements to characterize the spectral broadening further. These combined results reveal the quantum mechanical delocalization, which is important for functions like coherent energy transport and quantum information applications.


Subject(s)
DNA , Quantum Theory
7.
J Phys Chem B ; 124(37): 8042-8049, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32706583

ABSTRACT

The engineering and manipulation of delocalized molecular exciton states is a key component for artificial biomimetic light harvesting complexes as well as alternative circuitry platforms based on exciton propagation. Here we examine the consequences of strong electronic coupling in cyanine homodimers on DNA duplex scaffolds. The most closely spaced dyes, attached to positions directly across the double-helix from one another, exhibit pronounced Davydov splitting due to strong electronic coupling. We demonstrate that the DNA scaffold is sufficiently robust to support observation of the transition from the lowest energy (J-like) one-exciton state to the nonlocal two-exciton state, where each cyanine dye is in the excited state. This transition proceeds via sequential photon absorption and persists for the lifetime of the exciton, establishing this as a controlled method for creating two-exciton states. Our observations suggest that DNA-organized dye networks have potential as platforms for molecular logic gates and entangled photon emission based on delocalized two-exciton states.


Subject(s)
Coloring Agents , DNA
8.
ACS Nano ; 14(7): 8570-8583, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32677822

ABSTRACT

Femtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)-biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown. We used 55 nm gold nanoparticles (AuNPs) displaying double-stranded (ds) DNA to examine how, for dsDNA with different melting temperatures, the laser pulse energy fluence and bulk solution temperature affect the rate of local DNA denaturation. A universal "template" single-stranded DNA was attached to the AuNP surface, and three dye-labeled probe strands, distinct in length and melting temperature, were hybridized to it creating three individual dsDNA-AuNP bioconjugates. The dye-labeled probe strands were used to quantify the rate and amount of DNA release after a given number of light pulses, which was then correlated to the dsDNA denaturation temperature, resulting in a quantitative nanothermometer. The localized DNA denaturation rate could be modulated by more than threefold over the biologically relevant range of 8-53 °C by varying pulse energy fluence, DNA melting temperature, and surrounding bath temperature. With a modified dissociation equation tailored for this system, a "sensed" temperature parameter was extracted and compared to simulated AuNP temperature profiles. Determining actual biological responses in such systems can allow researchers to design precision nanoscale photothermal heating sources.


Subject(s)
Gold , Metal Nanoparticles , DNA , Lasers , Temperature
9.
Chem Sci ; 11(32): 8546-8557, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-34123114

ABSTRACT

Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment-protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm-1 and 1545 cm-1 for the 0-bp dimer and 1100 cm-1 for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications.

10.
Nat Commun ; 10(1): 5539, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804477

ABSTRACT

Breaking the valley degeneracy in monolayer transition metal dichalcogenides through the valley-selective optical Stark effect (OSE) can be exploited for classical and quantum valleytronic operations such as coherent manipulation of valley superposition states. The strong light-matter interactions responsible for the OSE have historically been described by a two-level dressed-atom model, which assumes noninteracting particles. Here we experimentally show that this model, which works well in semiconductors far from resonance, does not apply for excitation near the exciton resonance in monolayer WS2. Instead, we show that an excitonic model of the OSE, which includes many-body Coulomb interactions, is required. We confirm the prediction from this theory that many-body effects between virtual excitons produce a dominant blue-shift for photoexcitation detuned from resonance by less than the exciton binding energy. As such, we suggest that our findings are general to low-dimensional semiconductors that support bound excitons and other many-body Coulomb interactions.

11.
J Phys Chem Lett ; 10(8): 1914-1918, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30933522

ABSTRACT

The size of a quantum-confined nanocrystal determines the energies of its excitonic transitions. Previous work has correlated the diameters of PbS nanocrystals to their excitonic absorption; however, we observe that PbS quantum dots synthesized in saturated dispersions of PbCl2 can deviate from the previous 1Sh-1Se energy vs diameter curve by 0.8 nm. In addition, their surface differs chemically from that of PbS quantum dots produced via other syntheses. We find that these nanocrystals are coated in a shell that is measurable in transmission electron micrographs and contains lead and chlorine, beyond the monatomic chlorine termination previously proposed. This finding has implications for understanding the growth mechanism of this reaction, the line width of these quantum dots' photoluminescence, and electronic transport within films of these nanocrystals. Such fundamental knowledge is critical to applications of PbS quantum dots such as single-photon sources, photodetectors, solar cells, light-emitting diodes, lasers, and biological labels.

12.
J Phys Chem B ; 122(19): 5020-5029, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29698610

ABSTRACT

We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm-1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Base Pairing , Dimerization , Hydrogen Bonding , Molecular Dynamics Simulation , Nucleic Acid Conformation , Spectrometry, Fluorescence
13.
ACS Nano ; 11(12): 12601-12608, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29227085

ABSTRACT

Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 1011 to 1.2 × 1012 photons/cm2. This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.

14.
J Chem Phys ; 147(5): 055101, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28789556

ABSTRACT

Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.


Subject(s)
Benzothiazoles/chemistry , DNA/chemistry , Intercalating Agents/chemistry , Quinolines/chemistry , Fluorescent Dyes/chemistry
15.
J Phys Chem Lett ; 7(24): 5242-5246, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973899

ABSTRACT

Reduced dimensionality and strong Coulombic interactions in monolayer semiconductors lead to enhanced many-body interactions. Here, we report Auger recombination, i.e., exciton-exciton annihilation, in large-area chemical vapor deposition-grown monolayer WS2. Using ultrafast spectroscopy, we experimentally determine the Auger rate to be 0.089 ± 0.001 cm2/s at room temperature, which is an order of magnitude greater than the bulk value. This nonradiative recombination pathway dominates, regardless of excitation energy, for exciton densities greater than 8.0 ± 0.6 × 1010 cm-2 and below the Mott density. Higher-energy excitation above the A exciton resonance may initially produce a hot electron-hole gas that precedes exciton formation. Therefore, we use resonant excitation of the A exciton to ensure accuracy and avoid artifacts associated with other photogenerated species.

16.
Article in English | MEDLINE | ID: mdl-28649166

ABSTRACT

Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

17.
J Phys Chem B ; 118(50): 14555-65, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25397906

ABSTRACT

The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Spectrum Analysis/methods , Carbocyanines/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/chemistry , Spectrometry, Fluorescence/methods
18.
ACS Nano ; 8(1): 581-90, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24377267

ABSTRACT

We present absorption anisotropy measurements in PbSe nanostructures. This is accomplished via a new means of measuring absorption anisotropy in randomly oriented solution ensembles of nanostructures via pump-probe spectroscopy, which exploits the polarization memory effect. We observe isotropic absorption in nanocrystals and anisotropic absorption in nanorods, which increases upon elongation from aspect ratio 1 to 4 and is constant for longer nanorods. The measured volume-normalized absorption cross section is 1.8 ± 0.3 times larger for parallel pump and probe polarizations in randomly oriented nanorods as compared to nanocrystals. We show that this enhancement would be larger than an order of magnitude for aligned nanorods. Despite being in the strong quantum confinement regime, the aspect ratio dependence of the absorption anisotropy in PbSe nanorods is described classically by the effects of dielectric contrast on an anisotropic nanostructure. These results imply that the dielectric constant of the surrounding medium can be used to influence the optoelectronic properties of nanorods, including polarized absorption and emission, phonon modes, multiple exciton generation efficiency, and Auger recombination rate.

19.
Phys Rev Lett ; 108(7): 077402, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401254

ABSTRACT

We elucidate photoexcitation dynamics in C(60) and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C(60) is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C(60) are determined by modeling the rise of ground state bleaching of ZnPc absorption following C(60) excitation. Recombination dynamics transform from bimolecular to monomolecular as the layer thickness is reduced, revealing a metastable exciplex at the C(60)/ZnPc interface with a lifetime of 150 µs.

20.
Nano Lett ; 11(8): 3476-81, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21766838

ABSTRACT

The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.

SELECTION OF CITATIONS
SEARCH DETAIL
...