Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 15498, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326365

ABSTRACT

Endothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air-liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbß expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, ß, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbß gene expression were associated with lower FEV1 in asthma. Both Hbß knockdown and overexpression affected cell morphology. Hbß and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbß gene expression were associated with airflow obstruction. Hbß and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


Subject(s)
Epithelial Cells/metabolism , Hemoglobins/metabolism , Nitrogen Oxides/metabolism , Air , Biochemistry , Biotechnology , Bronchi/metabolism , Computer Simulation , Data Management , Epithelium/metabolism , Heme/chemistry , Hemoglobins/analysis , Humans , Immunohistochemistry , Immunoprecipitation , Lung/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxygen/chemistry , Proteomics/methods , RNA, Messenger/metabolism , RNA-Seq , Respiratory Function Tests
2.
Respir Care ; 66(1): 113-119, 2021 01.
Article in English | MEDLINE | ID: mdl-32962996

ABSTRACT

BACKGROUND: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense, and worsens airway inflammation. Inhaled Optate is designed to safely raise airway surface pH and is well tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms. METHODS: We grew primary NHAE cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether Optate would prevent viral infection and replication. Cells were pretreated with Optate or placebo prior to infection (multiplicity of infection = 1), and viral replication was determined with plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial. RESULTS: Optate almost completely prevented viral replication at each time point between 24 h and 120 h, relative to placebo, on both plaque assay and N protein expression (P < .001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs, or oxygenation. CONCLUSIONS: Inhaled Optate may be well suited for a clinical trial in patients with pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regard to pH, isotonicity, and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Epithelial Cells/drug effects , Glycine/pharmacology , Isotonic Solutions/pharmacology , Lung/drug effects , SARS-CoV-2 , Virus Replication/drug effects , Administration, Inhalation , Antiviral Agents/administration & dosage , Cells, Cultured/drug effects , Glycine/administration & dosage , Healthy Volunteers , Humans , Hydrogen-Ion Concentration/drug effects , Isotonic Solutions/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...