Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Comput Sci ; 2(8): 479-485, 2022 Aug.
Article in English | MEDLINE | ID: mdl-38177801

ABSTRACT

In the coming decades, we will face major computational challenges, when the improved sensitivity of third-generation gravitational wave detectors will be such that they will be able to detect a high number (of the order of 7 × 104 per year) of multi-messenger events from binary neutron star mergers, similar to GW 170817. In this Perspective, we discuss the application of multimodal artificial intelligence techniques for multi-messenger astrophysics, fusing the information from different signal emissions.


Subject(s)
Artificial Intelligence , Gravitation , Neutrons
3.
Sensors (Basel) ; 20(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287319

ABSTRACT

Gravitational-wave data (discovered first in 2015 by the Advanced LIGO interferometers and awarded by the Nobel Prize in 2017) are characterized by non-Gaussian and non-stationary noise. The ever-increasing amount of acquired data requires the development of efficient denoising algorithms that will enable the detection of gravitational-wave events embedded in low signal-to-noise-ratio (SNR) environments. In this paper, an algorithm based on the local polynomial approximation (LPA) combined with the relative intersection of confidence intervals (RICI) rule for the filter support selection is proposed to denoise the gravitational-wave burst signals from core collapse supernovae. The LPA-RICI denoising method's performance is tested on three different burst signals, numerically generated and injected into the real-life noise data collected by the Advanced LIGO detector. The analysis of the experimental results obtained by several case studies (conducted at different signal source distances corresponding to the different SNR values) indicates that the LPA-RICI method efficiently removes the noise and simultaneously preserves the morphology of the gravitational-wave burst signals. The technique offers reliable denoising performance even at the very low SNR values. Moreover, the analysis shows that the LPA-RICI method outperforms the approach combining LPA and the original intersection of confidence intervals (ICI) rule, total-variation (TV) based method, the method based on the neighboring thresholding in the short-time Fourier transform (STFT) domain, and three wavelet-based denoising techniques by increasing the improvement in the SNR by up to 118.94% and the peak SNR by up to 138.52%, as well as by reducing the root mean squared error by up to 64.59%, the mean absolute error by up to 55.60%, and the maximum absolute error by up to 84.79%.

4.
Gen Relativ Gravit ; 47(2): 11, 2015.
Article in English | MEDLINE | ID: mdl-26412861

ABSTRACT

The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

SELECTION OF CITATIONS
SEARCH DETAIL
...