Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 9(9): 1768-1774, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37780365

ABSTRACT

Density functional theory (DFT) is a powerful tool to model transition state (TS) energies to predict selectivity in chemical synthesis. However, a successful multistep synthesis campaign must navigate energetically narrow differences in pathways that create some limits to rapid and unambiguous application of DFT to these problems. While powerful data science techniques may provide a complementary approach to overcome this problem, doing so with the relatively small data sets that are widespread in organic synthesis presents a significant challenge. Herein, we show that a small data set can be labeled with features from DFT TS calculations to train a feed-forward neural network for predicting enantioselectivity of a Negishi cross-coupling reaction with P-chiral hindered phosphines. This approach to modeling enantioselectivity is compared with conventional approaches, including exclusive use of DFT energies and data science approaches, using features from ligands or ground states with neural network architectures.

2.
J Am Chem Soc ; 145(8): 4394-4399, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36790949

ABSTRACT

Herein we report the first total synthesis of the indole diterpenoid natural product shearilicine by an 11-step sequence via a generalizable precursor to the highly oxidized subclass of indole diterpenoids. A native chiral auxiliary strategy was employed to access the target molecule in an enantiospecific fashion. The formation of the key carbazole substructure was achieved through a mild intramolecular Heck cyclization, wherein a computational study revealed noncovalent substrate-ligand and ligand-ligand interactions that promoted migratory insertion.

3.
J Am Chem Soc ; 143(30): 11349-11360, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34270232

ABSTRACT

The SARS-CoV-2 coronavirus is an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell and is the primary target of neutralizing antibodies. The receptor binding domain (RBD) of the spike samples multiple conformations in a compromise between evading immune recognition and searching for the host-cell surface receptor. Using atomistic simulations of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we map the free energy landscape for RBD opening and identify interactions in an allosteric pocket that influence RBD dynamics. The results provide an explanation for experimental observation of increased antibody binding for a clinical variant with a substitution in this pocket. Our results also suggest the possibility of allosteric targeting of the RBD equilibrium to favor open states via binding of small molecules to the hinge pocket. In addition to potential value as experimental probes to quantify RBD conformational heterogeneity, small molecules that modulate the RBD equilibrium could help explore the relationship between RBD opening and S1 shedding.


Subject(s)
SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Allosteric Site , Molecular Dynamics Simulation , Protein Domains , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...