Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38021214

ABSTRACT

Objective: Human respiratory syncytial virus (RSV) is a primary cause of paediatric severe acute respiratory infection (SARI) worldwide, especially in developing countries. We investigated the genetic characteristics of RSV in northern Viet Nam to determine the prevalence and distribution of subtypes as well as the diversity and transmission patterns of genotypes. Methods: In two facilities, from January 2017 to December 2020, 1563 clinical specimens were collected from paediatric patients hospitalized with SARI and tested for RSV. Selected positive samples underwent sequencing analysis targeting the second hypervariable region of the G gene using next-generation sequencing. Results: The RSV positivity rate was 28.02% (438/1563 samples), and prevalence was highest in children aged < 1 year (43.84%; 192/438). Subtype RSV-A accounted for 53.42% (234/438) of cases, RSV-B for 45.89% (201/438), and there was coinfection in 0.68% (3/438). Both subtypes cocirculated and peaked during August-September in each year of the study. Phylogenetic analysis showed that RSV-A samples belonged to the ON1 genotype, which has three subgenotypes: ON1.1, ON1.2 and ON1.3. However, we did not find the 72-nucleotide duplication in the second hypervariable region of the G gene, a characteristic of genotype ON1, in any RSV-A samples. RSV-B samples belonged to genotype BA9. Discussion: Our results provide additional molecular characterization of RSV infections in Viet Nam. Specially, our study is the first to report the absence of the 72-nucleotide duplication in the G gene of RSV-A genotype ON1 in Viet Nam, which may help in understanding the genetic evolution of RSV and be useful for vaccine development in the future.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Infant , Respiratory Syncytial Virus, Human/genetics , Phylogeny , Vietnam/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Genotype , Nucleotides
2.
Environ Chall (Amst) ; 7: 100526, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37519307

ABSTRACT

Objective: The objective of the paper is to investigate the presence of SARS-CoV-2 on inanimate surfaces in four healthcare facilities treating patients with COVID-19 and four quarantine regiments of provincial military commands. Methods: From August to October 2020, a total of 468 one-off environmental samples consisting of inanimate surfaces, garbage, and wastewater were collected. The real-time RT-PCR assay targeting E and RdRp genes to detect SARS-CoV-2 and checklist and questionnaire of disinfection practices were employed. If detected by RT-PCR, then positive samples are subjected to cell culture to determine viability. Results: The test results showed all samples (100%) to be negative with SARS-CoV-2 resulting in unperformed virus culture. As for recent disinfection practices, chlorine-based products dissolved at a concentration of 0.1% (1000 ppm) in the general context or 0.5% (5000 ppm) for blood and body fluid spills are routinely applied twice a day and at the discharge of patients or quarantined people. Conclusions: The finding may illustrate the importance of disinfection practices in removing pathogens or significantly reducing SARS-CoV-2 contamination on environmental surfaces and waste.

3.
Emerg Infect Dis ; 27(5): 1519-1521, 2021 May.
Article in English | MEDLINE | ID: mdl-33647228

ABSTRACT

A cluster of severe acute respiratory syndrome coronavirus 2 infections in Danang, Vietnam, began July 25, 2020, and resulted in 551 confirmed cases and 35 deaths as of February 2021. We analyzed 26 sequences from this cluster and identified a novel shared mutation in nonstructural protein 9, suggesting a single introduction into Vietnam.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , RNA-Binding Proteins , Vietnam/epidemiology , Viral Proteins
4.
J Infect Dis ; 216(suppl_4): S529-S538, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28934457

ABSTRACT

Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance.


Subject(s)
Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Amino Acid Sequence , Animals , Drug Resistance, Multiple, Viral , Genotype , Genotyping Techniques , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/drug therapy , Influenza in Birds/transmission , Influenza, Human/drug therapy , Pandemics , Phylogeny , Poultry/virology , RNA, Viral/genetics , Sequence Analysis, RNA , Spatio-Temporal Analysis , Vietnam/epidemiology , Viral Proteins/genetics
5.
Emerg Infect Dis ; 19(11): 1756-65, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24188643

ABSTRACT

Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001-2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year.


Subject(s)
Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/epidemiology , Influenza, Human/transmission , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Molecular Sequence Data , Phylogeny , Phylogeography , Public Health Surveillance , Vietnam/epidemiology
6.
J Gen Virol ; 85(Pt 6): 1625-1631, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15166447

ABSTRACT

This study analyses the evolutionary relatedness of 16 Japanese encephalitis virus (JEV) isolates (nine from Vietnam and seven from Japan) to previously published JEV strains using E gene sequence data. Vietnamese and Japanese strains isolated between 1986 and 1990 were found to cluster in genotype 3. However, more recent Vietnamese and Japanese strains isolated between 1995 and 2002 grouped within genotype 1, now a dominant though previously unreported genotype in Vietnam. In addition, in this study, strains isolated between 1995 and 2002 were more closely related to those isolated in the 1990s than to the older genotype 1 strains. Recently, the introduction of JEV genotype 1 into Japan and Korea has also been reported. Hence this genotype shift phenomenon may be occurring throughout all East Asia. Further studies on JEV ecology are needed to clarify the mechanism of JEV genotype 1 spread to new territories.


Subject(s)
Encephalitis Virus, Japanese/classification , Animals , Asia, Southeastern , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/isolation & purification , Asia, Eastern , Genotype , Humans , Phylogeny , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...