Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 169: 105660, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35764189

ABSTRACT

Groundwater represents one of the largest safe drinking water sources worldwide; however, it has been threatened by increased human activities in recent years. Candida species express virulence factors that contribute to the establishment and worsening of infections, although little is known about the virulence profiles of these species in potable groundwater. The aim of this study was to detect the presence of yeasts in groundwater from residential wells and to evaluate the antifungal susceptibility profile, hydrolytic enzyme production, adhesion capacity, and biofilm formation of Candida spp. Fifty yeasts representing nine genera were isolated: Candida (48%), Meyerozyma (20%), Pichia (8%), Exophiala (8%), Clavispora (4%), Kodamaea (4%), Rhodotorula (4%), Hanseniaspora (2%), and Kazachstania (2%). Candida parapsilosis was the most commonly isolated species, and approximately 29% of the Candida isolates were resistant to at least one azole. All Candida isolates were able to produce hydrolytic enzymes and adhere to polystyrene, and most were classified as hydrophobic. Candida spp. can establish and form biofilms when cultivated in different media such as Sabouraud broth, water, and calcium hypochlorite. The use of contaminated groundwater for human consumption represents a possible route for the transmission of clinically relevant yeasts that can cause fungal infections, especially in immunocompromised individuals. Therefore, it is important to evaluate and establish effective measures for groundwater treatment to ensure the quality and safety for consumption.


Subject(s)
Groundwater , Saccharomycetales , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Brazil , Candida , Cities , Humans , Microbial Sensitivity Tests , Yeasts
2.
J Inorg Biochem ; 213: 111277, 2020 12.
Article in English | MEDLINE | ID: mdl-33045593

ABSTRACT

Candida spp. cause invasive fungal infections. One species, Candida glabrata, may present intrinsic resistance to conventional antifungal agents, thereby increasing mortality rates in hospitalized patients. In this context, metal complexes present an alternative for the development of new antifungal drugs owing to their biological and pharmacological activities demonstrated in studies in the last decades. Accordingly, in this study we have synthesized and characterized two new Co(II) complexes with thiocarbamoyl-pyrazoline ligands to assess their antimicrobial, mutagenic, and cytotoxic potential. For antimicrobial activity, the broth microdilution method was performed against ATCC strains of Candida spp. and fluconazole dose-dependent isolates of C. glabrata obtained from urine samples. The Ames test was used to assess mutagenic potential. The reduction method of the MTS reagent (3 [4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium) was performed with HeLa, SiHa, and Vero cells to determine cytotoxicity. Both complexes exhibited fungistatic and fungicidal activity for the yeasts used in the study, demonstrating greater potential for C. glabrata ATCC 2001 and the C. glabrata CG66 isolate with a Minimum Inhibitory Concentration MIC from 3.90 to 7.81 µg mL-1 and fungicidal action from 7.81 to 15.62 µg mL-1. The complexes inhibited and degraded biofilms by up to 90% and did not present mutagenic and cytotoxic potential at the concentrations evaluated for MIC. Thus, the complexes examined herein suggest promising alternatives for the development of new antifungal drugs.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cobalt/chemistry , Coordination Complexes/chemistry , Pyrazoles/chemistry , Thiocarbamates/chemistry , Animals , Biofilms/drug effects , Candida glabrata/drug effects , Chlorocebus aethiops , Coordination Complexes/pharmacology , Crystallography, X-Ray , HeLa Cells , Humans , Ligands , Microbial Sensitivity Tests , Molecular Structure , Spectrum Analysis/methods , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...