Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890139

ABSTRACT

We aimed to investigate the cardioprotective effects of ethanolic Melissa officinalis L. extract (ME) in the rat model of myocardial ischemia/reperfusion (I/R) injury. Thirty-two Wistar rats were randomly divided into a CTRL non-treated control group with myocardial I/R injury and three experimental groups of rats treated with 50, 100, or 200 mg/kg of ME for 7 days per os. Afterward, hearts were isolated, and cardiodynamic function was assessed via the Langendorff model of global 20 min ischemia and 30 min reperfusion. Oxidative stress parameters were determined spectrophotometrically from the samples of coronary venous effluent (O2-, H2O2, TBARS, and NO2-,) and heart tissue homogenate (TBARS, NO2-, SOD, and CAT). H/E and Picrosirius red staining were used to examine cardiac architecture and cardiac collagen content. ME improved cardiodynamic parameters and achieved to preserve cardiac architecture after I/R injury and to decrease fibrosis, especially in the ME200 group compared to CTRL. ME200 and ME100 markedly decreased prooxidants TBARS, O2-, and H2O2 while increasing NO2-. Hereby, we confirmed the ME`s ability to save the heart from I/R induced damage, even after short-term preconditioning in terms of preserving cardiodynamic alterations, cardiac architecture, fibrosis, and suppressing oxidative stress, especially in dose of 200 mg/kg.

2.
Plants (Basel) ; 11(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35336639

ABSTRACT

Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in seed necessary for germination. This research was conducted to examine the influence of various priming treatments on physiological performance (germination, growth, lipid peroxidation, primary and secondary metabolism) and antioxidant activity of radish seedlings. On the basis of germination and growth characteristics, vigor index, and relative water content in leaves, it was confirmed that priming treatments with 0.01% ascorbic acid (AA) and 1% KNO3 improves the initial stages of radish development. Furthermore, the efficiency of AA as a priming agent was confirmed through the reduction of malondialdehyde (MDA) level compared to unprimed seedlings. On the other hand, hormopriming with indole-3-acetic acid (IAA) significantly increased the concentration of photosynthetic pigments and total soluble leaf proteins compared to non-primed seedlings. The highest content of total phenolic compounds, including flavonoids, were obtained after hormopriming with 1 mM IAA and halopriming with 1% MgSO4. On the basis of the percentage of inhibition of DPPH radicals, it was confirmed that treatments with IAA and AA can improve the antioxidant activity of radish seedlings. This study provides useful information regarding the possibilities of pregerminative metabolic modulation through the seed priming for the biochemical and physiological improvement of radish, and this topic should be further investigated in order to determine the potential use of AA and IAA as suitable priming agents in radish commercial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...