Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nitric Oxide ; 132: 15-26, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36736618

ABSTRACT

Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.


Subject(s)
Bradykinin , Melanoma , Mice , Animals , Bradykinin/pharmacology , Bradykinin/metabolism , Superoxides , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Movement
2.
Cell Biol Int ; 46(1): 158-169, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34719858

ABSTRACT

Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations. Specific probes to detect alternative splicing of NOS2 were used in two isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620). Splicing variant of NOS2 S3, lacking exons 9, 10, and 11, was overexpressed in SW480 cells. NOS2 S3 was silenced in SW480 cells. Flow-cytometry analysis was used to estimate the intracellular NO levels and to analyze the cell cycle of the studied cell lines. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine apoptosis and autophagy markers. SW480 and SW620 cells expressed NOS2 S3. Overexpression of the NOS2 S3 in SW480 cells downregulated intracellular NO levels. SW480 cells with knocked down NOS2 S3 (referred to as S3C9 cells) had higher intracellular levels of NO compared to the wild-type SW480 cells under serum restriction. Higher NO levels resulted in the loss of viability of S3C9 cells, which was associated with autophagy. Induction of autophagy by elevated intracellular NO levels in S3C9 cells under serum restriction, suggests that autophagy operates as a cytotoxic response to nitrosative stress. The expression of NOS2 S3 plays an important role in regulating intracellular NO production and maintaining viability in SW480 cells under serum restriction. These findings may prove significant in the design of NOS2/NO-based therapies for colon cancer.


Subject(s)
Adenocarcinoma/enzymology , Autophagy , Colonic Neoplasms/enzymology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Nitrosative Stress , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Nitric Oxide Synthase Type II/genetics , Protein Isoforms , Signal Transduction
3.
Cell Biol Int ; 45(6): 1124-1147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33533523

ABSTRACT

With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.


Subject(s)
Immune Evasion , Virus Diseases/virology , Virus Physiological Phenomena/immunology , Viruses/immunology , Animals , Humans , Immunity, Innate , Metabolic Networks and Pathways , Virus Replication
4.
Nitric Oxide ; 93: 78-89, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31539562

ABSTRACT

Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV-1/metabolism , Nitric Oxide/metabolism , Signal Transduction/physiology , Virus Replication/physiology , HIV Infections , Humans , Nitric Oxide Donors/pharmacology , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , src-Family Kinases/metabolism
5.
Nitric Oxide ; 47: 40-51, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25819133

ABSTRACT

The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK.


Subject(s)
Cell Movement/drug effects , Endothelial Cells/drug effects , Nitric Oxide/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , ras Proteins/metabolism , Bradykinin/pharmacology , Endothelial Cells/metabolism , Humans , Nitric Oxide/biosynthesis
6.
Arch Biochem Biophys ; 558: 14-27, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24960080

ABSTRACT

Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R. NO-mediated stimulatory effects on tyrosine phosphorylation of the EGF-R, where cGMP independent. Inhibition of soluble guanylyl cyclase followed by BK stimulation of human umbilical vein endothelial cells (HUVECs) did not change tyrosine phosphorylation levels of EGF-R. BK-stimulation of HUVEC promoted S-nitrosylation of the phosphatase SHP-1 and of p21Ras. Phosphorylation and activation of the ERK1/2 MAP kinases mediated by BK was dependent on the activation of the B2 receptor, of the EGF-R, and of p21 Ras. Inhibition of BK-stimulated S-nitrosylation prevented the activation of the ERK1/2 MAP kinases. Furthermore, activated ERK1/2 MAP kinases inhibited internalization of EGF-R by phosphorylating specific Thr residues of its cytoplasmic domain. BK-induced proliferation of endothelial cells was partially inhibited by the NOS inhibitor (L-NAME) and by the MEK inhibitor (PD98059). BK stimulated the expression of vascular endothelial growth factor (VEGF). VEGF expression was dependent on the activation of the EGF-R, the B2 receptor, p21Ras, and on NO generation. A Matrigel®-based in vitro assay for angiogenesis showed that BK induced the formation of capillary-like structures in HUVEC, but not in those cells expressing a mutant of the EGF-R lacking tyrosine kinase activity. Additionally, pre-treatment of BK-stimulated HUVEC with L-NAME, PD98059, and with SU5416, a specific inhibitor of VEGFR resulted in inhibition of in vitro angiogenesis. Our findings indicate that BK-mediated angiogenesis in endothelial cells involves the induction of the expression of VEGF associated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP kinases signaling pathway.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Bradykinin/pharmacology , ErbB Receptors/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Nitric Oxide/metabolism , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Nitric Oxide/biosynthesis , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Rabbits , S-Nitrosothiols/metabolism , Tyrosine/metabolism
7.
Antioxid Redox Signal ; 18(3): 221-38, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-22894707

ABSTRACT

AIMS: S-nitrosylation of Cys118 is a redox-based mechanism for Ras activation mediated by nitric oxide (NO) at the plasma membrane. RESULTS: Ras signaling pathway stimulation by 50 and/or 100 µM of S-nitrosoglutathione (GSNO) causes proliferation of HeLa cells. Proliferation was not observed in HeLa cells overexpressing non-nitrosatable H-Ras(C118S). HeLa cells overexpressing H-Ras(wt) containing the spatiotemporal probe green fluorescent protein (GFP) fused to the Ras-binding domain of Raf-1 (GFP-RBD) incubated with 100 µM GSNO stimulated a rapid and transient redistribution of GFP-RBD to the plasma membrane, followed by a delayed and sustained recruitment to the Golgi. No activation of H-Ras at the plasma membrane occurred in cells overexpressing H-Ras(C118S), contrasting with a robust and sustained activation of the GTPase at the Golgi. Inhibition of Src kinase prevented cell proliferation and activation of H-Ras by GSNO at the Golgi. Human umbilical vein endothelial cells (HUVECs) stimulated with bradykinin to generate NO were used to differentiate cell proliferation and Ras activation at the plasma membrane versus Golgi. In this model, Src kinase was not involved in cell proliferation, whereas Ras activation proceeded only at the plasma membrane, indicating that HUVEC proliferation induced by NO resulted only from stimulation of Ras. INNOVATION: The present work is the first to demonstrate that NO-mediated activation of Ras in different subcellular compartments regulates different downstream signaling pathways. CONCLUSION: S-nitrosylation of H-Ras at Cys(118) and the activation of Src kinase are spatiotemporally linked events of the S-nitrosothiol-mediated signaling pathway that occurs at the plasma membrane and at the Golgi. The nonparticipation of Src kinase and the localized production of NO by endothelial NO synthase at the plasma membrane limited NO-mediated Ras activation to the plasma membrane.


Subject(s)
Cell Proliferation , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , S-Nitrosoglutathione/pharmacology , Animals , Bradykinin/pharmacology , COS Cells , Calcium Signaling , Cell Membrane/enzymology , Chlorocebus aethiops , Cysteine/analogs & derivatives , Cysteine/metabolism , Enzyme Activation , Golgi Apparatus/enzymology , HeLa Cells , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nitric Oxide/physiology , Oxidation-Reduction , Phospholipase C gamma/antagonists & inhibitors , Phospholipase C gamma/metabolism , Protein Processing, Post-Translational , S-Nitrosothiols/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
8.
Redox Rep ; 16(1): 27-37, 2011.
Article in English | MEDLINE | ID: mdl-21605496

ABSTRACT

We investigated the role of protein tyrosine phosphatase-alpha (PTPα) expression in the cell death profile of the A431 human carcinoma cell line that was induced by cytotoxic concentrations of the nitric oxide (NO) donors sodium nitroprusside (SNP) and 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18). Both NO donors promoted extensive cell detachment in A431 parental cells as compared to the detachment observed for A431 cells that ectopically expressed PTPα (A431 (A27B(PTPα)) cells). The NO-induced cell death characteristics for both cell lines were examined. After incubation for 10 hours with 2.0 mM SNP, attached or detached A431 cells underwent apoptosis. Cells were highly positive for Annexin-V, featured increased cleavage of procaspase-8, activation of downstream caspase-3, and activation of poly-ADP-ribose polymerase 1 (PARP-1). In contrast, exposure of A431 (A27B(PTPα)) cells to 2.0 mM SNP produced an increase in the release of lactate dehydrogenase and enhanced incorporation of propidium iodide. In addition, A431 (A27B(PTPα)) cells showed partial inhibition of the activities of caspase-8, caspase-3, and PARP-1 upon detachment and cell death induced by SNP treatment. Results indicate that necrotic cell damage was induced, characterized by cellular swelling and lysis. We conclude from these results that PTPα regulates the A431 tumor cell death profile mediated by NO donors. Expression of PTPα or its absence may determine the occurrence of NO-induced cell death with necrotic or apoptotic features, respectively.


Subject(s)
Apoptosis , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Nitroso Compounds/pharmacology , Receptor-Like Protein Tyrosine Phosphatases, Class 4/metabolism , Caspases/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Humans , L-Lactate Dehydrogenase/drug effects , Nitric Oxide/metabolism , Phosphatidylserines/analysis , Poly(ADP-ribose) Polymerases/drug effects , Propidium/analysis , Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics , Transfection
9.
Antioxid Redox Signal ; 13(2): 109-25, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20055753

ABSTRACT

The role of NO in regulating the focal adhesion proteins, Src, FAK, p130 Cas, and PTP-alpha, was investigated. Fibroblasts expressing PTP-alpha (PTP-alpha(WT) cells), fibroblasts "knockout" for PTP-alpha (PTP-alpha(-/-) cells), and "rescued" "knockout" fibroblasts (PTP-alpha A5/3 cells) were stimulated with either S-nitroso-N-acetylpenicillamine (SNAP) or fetal bovine serum (FBS). FBS increased inducible NO synthase in both cell lines. Activation of Src mediated either by SNAP or by FBS occurred independent of dephosphorylation of Tyr527 in PTP-alpha(-/-) cells. Both stimuli promoted dephosphorylation of Tyr527 and activation of Src kinase in PTP-alpha(WT) cells. NO-mediated activation of Src kinase affected the activities of FAK and p130Cas and was dependent on the expression of PTP-alpha. Analogous to tyrosine phosphorylation, SNAP and FBS stimulated differential generation of NO and S-nitrosylation of Src kinase in both cell lines. Incubation with SNAP resulted in higher levels of NO and S-nitrosylation of immunoprecipitated Src in PTP-alpha(-/-) cells (oxidizing redox environment) as compared with the levels of NO and S-nitrosylated Src in PTP-alpha(WT) cells (reducing redox environment). SNAP differentially stimulated cell proliferation of both cell lines is dependent on the intracellular redox environment, Src activity, and PTP-alpha expression. This dependence also is observed with FBS-stimulated cell migration.


Subject(s)
Crk-Associated Substrate Protein/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Nitric Oxide/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 4/metabolism , src-Family Kinases/metabolism , Animals , Cattle , Cell Movement , Cell Proliferation , Cells, Cultured , Crk-Associated Substrate Protein/genetics , Fibroblasts/cytology , Fibroblasts/physiology , Focal Adhesion Protein-Tyrosine Kinases/genetics , Mice , Mice, Knockout , Nitric Oxide/genetics , Nitric Oxide Donors/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction , Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics , S-Nitroso-N-Acetylpenicillamine/metabolism , src-Family Kinases/genetics
10.
Nitric Oxide ; 18(4): 241-55, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18291122

ABSTRACT

S-Nitrosylation reactions are considered to be a major mechanism by which NO-related bioactivities are regulated in vivo. In the present study, we show the effects of the low molecular weight S-nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), on cell cycle progression of rabbit aortic endothelial cells (RAEC). SNAP at low concentrations (0.1mM) stimulated the p21Ras-ERK1/2 MAP kinase signaling pathway. Activation of this signaling pathway was strongly inhibited in cells stably transfected with S-nitrosylation insensitive p21Ras (p21(Ras (C118S))). Furthermore, the SNAP-induced effects on cell cycle progression were eliminated in RAEC expressing N17Ras, a negative dominant mutant of p21Ras. Upon stimulation with SNAP, ERK1/2 MAP kinases become phosphorylated and translocate to the nucleus promoting the phosphorylation of the transcription factor Elk1. Synthesis of Cyclin D1 and stimulation of the cyclin-dependent kinases cdk4 and cdk6 resulted in the phosphorylation of the nuclear protein Rb and its dissociation from the E2F family of transcription factors. Cells then pass the restriction point in the late G1 phase. Cyclins E and A were expressed as the cell cycle progressed through the S phase upon stimulation with SNAP. Further transition in the cell cycle from the G2 to M phase was evidenced by the G2/M peak found in a histogram of the cell-phase distribution in SNAP-treated RAEC. These observations suggest that low molecular weight S-nitrosothiols may promote cell cycle progression possibly through the transnitrosation of p21Ras, and activation of the Ras-ERK1/2 MAP kinases signaling pathway.


Subject(s)
Aorta/cytology , Cell Cycle/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitrosothiols/pharmacology , Active Transport, Cell Nucleus , Animals , Cells, Cultured , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Enzyme Activation/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Weight , Phosphorylation , Proto-Oncogene Proteins p21(ras)/metabolism , Rabbits , Retinoblastoma Protein/metabolism , ets-Domain Protein Elk-1/metabolism
11.
Methods Enzymol ; 396: 350-8, 2005.
Article in English | MEDLINE | ID: mdl-16291244

ABSTRACT

In this chapter, we provide an overview of nitric oxide (NO)-tyrosine phosphorylation signal transduction pathways, integrating them with the cyclic guanosine monophosphate (cGMP) and S-nitrosylation-mediated pathways that are triggered by NO. The second half of this chapter includes a description of the methods that our laboratory has used extensively to characterize the mechanisms involved in signaling events mediated by this pathway. These include assays for detecting protein tyrosine phosphorylation, tyrosine phosphorylation of the epidermal growth factor (EGF) receptor, phosphorylation of the ERK1/2 mitogen-activated protein (MAP) kinases, transfection of cells with modified forms of p21Ras, and an assay of p21Ras.


Subject(s)
Signal Transduction , Tyrosine/metabolism , Cyclic GMP/metabolism , ErbB Receptors/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins p21(ras)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...