Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Forum Infect Dis ; 11(5): ofae251, 2024 May.
Article in English | MEDLINE | ID: mdl-38770208

ABSTRACT

Hepatitis C virus (HCV) infection is associated with extrahepatic effects, including reduced diffusing capacity of the lungs. It is unknown whether clearance of HCV infection is associated with improved diffusing capacity. In this sample of women with and without human immunodeficiency virus, there was no association between HCV clearance and diffusing capacity.

2.
Biol Sex Differ ; 12(1): 33, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33933156

ABSTRACT

BACKGROUND: The soluble prorenin receptor (sPRR), a member of the renin-angiotensin system (RAS), is elevated in plasma of patients with preeclampsia, hypertension, chronic kidney disease (CKD), and type 2 diabetes. Our goal was to examine the relationship between sPRR and RAS activation to define whether sexual dimorphisms in sPRR might explain sex disparities in renal outcomes in patients with type 2 diabetes. METHODS: Two hundred sixty-nine participants were included in the study (mean age, 48 ± 16 years; 42% men, 58% women), including 173 controls and 96 subjects with type 2 diabetes. In plasma and urine, we measured sPRR, plasma renin activity (PRA), and prorenin. In the urine, we also measured angiotensinogen along with other biomarkers of renal dysfunction. RESULTS: Plasma sPRR and PRA were significantly higher in women with type 2 diabetes compared to men. In these women, plasma sPRR was positively correlated with PRA, age, and body mass index (BMI). In contrast, in men the sPRR in urine but not in plasma positively correlated with eGFR in urine, but negatively correlated with urine renin activity, plasma glucose, age, and BMI. CONCLUSIONS: In patients with type 2 diabetes, sPRR contributes to RAS stimulation in a sex-dependent fashion. In diabetic women, increased plasma sPRR parallels the activation of systemic RAS; while in diabetic men, decreased sPRR in urine matches intrarenal RAS stimulation. sPRR might be a potential indicator of intrarenal RAS activation and renal dysfunction in men and women with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Female , Humans , Kidney Diseases , Male , Middle Aged , Receptors, Cell Surface , Renin , Sex Characteristics , Prorenin Receptor
3.
Front Physiol ; 11: 559341, 2020.
Article in English | MEDLINE | ID: mdl-33281610

ABSTRACT

In the kidney, the stimulation of renin production by the collecting duct (CD-renin) contributes to the development of hypertension. The CD is a major nephron segment for the synthesis of nitric oxide (NO), and low NO bioavailability in the renal medulla is associated with hypertension. However, it is unknown whether NO regulates renin production in the CD. To test the hypothesis that low intrarenal NO levels stimulate the production of CD-renin, we first examined renin expression in the distal nephron segments of CD-eNOS deficient mice. In these mice, specific CD-renin immunoreactivity was increased compared to wild-type littermates; however, juxtaglomerular (JG) renin was not altered. To further assess the intracellular mechanisms involved, we then treated M-1 cells with either 1 mM L-NAME (L-arginine analog), an inhibitor of NO synthase activity, or 1 mM NONOate, a NO donor. Both treatments increased intracellular renin protein levels in M-1 cells. However, only the inhibition of NOS with L-NAME stimulated renin synthesis and secretion as reflected by the increase in Ren1C transcript and renin protein levels in the extracellular media, respectively. In addition, NONOate induced a fast mobilization of cGMP and intracellular renin accumulation. These response was partially prevented by guanylyl cyclase inhibition with ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1]. Accumulation of intracellular renin was blocked by protein kinase G (PKG) and protein kinase C (PKC) inhibitors. Our data indicate that low NO bioavailability increases CD-renin synthesis and secretion, which may contribute to the activation of intrarenal renin angiotensin system.

SELECTION OF CITATIONS
SEARCH DETAIL
...