Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209712

ABSTRACT

The paper presents a finite element investigation of the effect of material composition and the constituents' interaction on the tensile behavior of strain-hardening cement-based composites (SHCC) both with and without textile reinforcement. The input material parameters for the SHCC and continuous reinforcement models, as well for their bond, were adopted from reference experimental investigations. The textile reinforcement was discretized by truss elements in the loaded direction only, with the constitutive relationships simulating a carbon and a polymer textile, respectively. For realistic simulation of macroscopic tensile response and multiple cracking patterns in hybrid fiber-reinforced composites subjected to tension, a multi-scale and probabilistic approach was adopted. SHCC was simulated using the smeared crack model, and the input constitutive law reflected the single-crack opening behavior. The probabilistic definition and spatial fluctuation of matrix strength and tensile strength of the SHCC enabled realistic multiple cracking and fracture localization within the loaded model specimens. Two-dimensional (2D) simulations enabled a detailed material assessment with reasonable computational effort and showed adequate accuracy in predicting the experimental findings in terms of macroscopic stress-strain properties, extent of multiple cracking, and average crack width. Besides material optimization, the model is suitable for assessing the strengthening performance of hybrid fiber-reinforced composites on structural elements.

2.
Materials (Basel) ; 14(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557098

ABSTRACT

In strain-hardening cement-based composites (SHCC), polypropylene (PP) fibers are often used to provide ductility through micro crack-bridging, in particular when subjected to high loading rates. For the purposeful material design of SHCC, fundamental research is required to understand the failure mechanisms depending on the mechanical properties of the fibers and the fiber-matrix interaction. Hence, PP fibers with diameters between 10 and 30 µm, differing tensile strength levels and Young's moduli, but also circular and trilobal cross-sections were produced using melt-spinning equipment. The structural changes induced by the drawing parameters during the spinning process and surface modification by sizing were assessed in single-fiber tensile experiments and differential scanning calorimetry (DSC) of the fiber material. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements were applied to determine the topographical and wetting properties of the fiber surface. The fiber-matrix interaction under quasi-static and dynamic loading was studied in single-fiber pull-out experiments (SFPO). The main findings of microscale characterization showed that increased fiber tensile strength in combination with enhanced mechanical interlocking caused by high surface roughness led to improved energy absorption under dynamic loading. Further enhancement could be observed in the change from a circular to a trilobal fiber cross-section.

3.
Materials (Basel) ; 13(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321770

ABSTRACT

The paper at hand presents an investigation of the tensile behavior of high-strength, strain-hardening cement-based composites (HS-SHCC), reinforced with a single layer of continuous, two-dimensional textile made of ultra-high molecular weight polyethylene (UHMWPE). Uniaxial tension tests were performed on the bare UHMWPE textiles, on plain HS-SHCC, and on the hybrid fiber-reinforced composites. The bond properties between the textile yarns and the surrounding composite were investigated in single-yarn pullout experiments. In order to assess the influence of bond strength between the yarn and HS-SHCC on the tensile behavior of the composites with hybrid fiber reinforcement, the textile samples were analyzed both with, and without, an additional coating of epoxy resin and sand. Compared to the composites reinforced with carbon yarns in previous studies by the authors, the high elongation capacity of the UHMWPE textile established the higher strain capacity of the hybrid fiber-reinforced composites, and showed superior energy absorption capacity up to failure. The UHMWPE textile limited the average crack width in comparison with that of plain HS-SHCC, but led to slightly larger crack widths when compared to equivalent composites reinforced with carbon textile, the reason for which was traced back to the lower Young's modulus and the higher elongation capacity of the polymer textile.

4.
Materials (Basel) ; 13(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153034

ABSTRACT

This paper presents a numerical two-scale framework for the simulation of fiber reinforced concrete under impact loading. The numerical homogenization framework considers the full balance of linear momentum at the microscale. This allows for the study of microscopic inertia effects affecting the macroscale. After describing the ideas of the dynamic framework and the material models applied at the microscale, the experimental behavior of the fiber and the fiber-matrix bond under varying loading rates are discussed. To capture the most important features, a simplified matrix cracking and a strain rate sensitive fiber pullout model are utilized at the microscale. A split Hopkinson tension bar test is used as an example to present the capabilities of the framework to analyze different sources of dynamic behavior measured at the macroscale. The induced loading wave is studied and the influence of structural inertia on the measured signals within the simulation are verified. Further parameter studies allow the analysis of the macroscopic response resulting from the rate dependent fiber pullout as well as the direct study of the microscale inertia. Even though the material models and the microscale discretization used within this study are simplified, the value of the numerical two-scale framework to study material behavior under impact loading is demonstrated.

5.
Materials (Basel) ; 13(18)2020 Sep 06.
Article in English | MEDLINE | ID: mdl-32900004

ABSTRACT

This contribution presents a framework for Numerical Material Testing (NMT) of textile reinforced concrete based on the mesomechanical analysis of a Representative Volume Element (RVE). Hence, the focus of this work is on the construction of a proper RVE representing the dominant mechanical characteristics of Textile Reinforced Concrete (TRC). For this purpose, the RVE geometry is derived from the periodic mesostructure. Furthermore, sufficient constitutive models for the individual composite constituents as well as their interfacial interactions are considered, accounting for the particular mechanical properties. The textile yarns are modeled as elastic transversal isotropic unidirectional layers. For the concrete matrix, an advanced gradient enhanced microplane model is utilized considering the complex plasticity and damage behavior at multiaxial loading conditions. The mechanical interactions of the constituents are modeled by an interface formulation considering debonding and friction as well as contact. These individual constitutive models are calibrated by corresponding experimental results. Finally, the damage mechanisms as well as the load bearing behavior of the constructed TRC-RVE are analyzed within an NMT procedure based on a first-order homogenization approach. Moreover, the effective constitutive characteristics of the composite at macroscale are derived. The numerical results are discussed and compared to experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...