Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38721903

ABSTRACT

We present a technique for measuring the interactions between pairs of colloidal particles in two optical traps. This method is particularly suitable for measuring strongly attractive potentials, an otherwise challenging task. The interaction energy is calculated from the distribution of inter-particle separations by accounting for the contribution from the optical traps with arbitrary trap profiles. The method is simple to implement and applicable to different types of pair potentials and optical trapping geometries. We apply the method to measure dipolar pair interactions in experiments with paramagnetic colloids in external magnetic fields. We obtain consistent and accurate results in all regimes, from strongly attractive to repulsive potentials. By means of computer simulations, we demonstrate that the proposed method can be successfully applied to systems with complex pair interactions characterized by multiple attractive and repulsive regimes, which are ubiquitous in soft and biological matter.

2.
Phys Rev E ; 107(6-1): 064601, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464682

ABSTRACT

We perform feedback experiments and simulations in which a colloidal dumbbell particle, acting as a particle on a ring, is followed by a repulsive optical trap controlled by a continuous-time-delayed feedback protocol. The dynamics are described by a persistent random walk similarly to that of an active Brownian particle, with a transition from predominantly diffusive to driven behavior at a critical delay time. We model the dynamics in the short and long delay regimes using stochastic delay differential equations and derive a condition for stable driven motion. We study the stochastic thermodynamic properties of the system, finding that the maximum work done by the trap coincides with a local minimum in the mutual information between the trap and the particle position at the onset of stable driven dynamics.

3.
Langmuir ; 35(24): 7962-7969, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31095907

ABSTRACT

We describe the synthesis and application of 3-(trimethoxysilyl)propyl methacrylate (TPM) particles as a colloidal model system for three-dimensional (3D) confocal scanning laser microscopy. The effect of the initial TPM concentration on the growth and polydispersity of the particles and a recently developed solvent transfer method to disperse particles in a refractive index and density-matching solvent mixture are reviewed and discussed. To fully characterize the system as a colloidal model, we measure the pair potential between the TPM particles directly using optical tweezers. Finally, we use 3D confocal microscopy to image a sedimentation-diffusion equilibrium of TPM particles to characterize the phase behavior and particle dynamics through successful detection and tracking of all particles in the field of view.

4.
Adv Mater ; 31(17): e1807514, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30869177

ABSTRACT

The bulk synthesis of fluorescent colloidal SU-8 polymer rods with tunable dimensions is described. The colloidal SU-8 rods are prepared by shearing an emulsion of SU-8 polymer droplets and then exposing the resulting non-Brownian rods to ultrasonic waves, which breaks them into colloidal rods with typical lengths of 3.5-10 µm and diameters of 0.4-1 µm. The rods are stable in both aqueous and apolar solvents, and by varying the composition of apolar solvent mixtures both the difference in refractive index and mass density between particles and solvent can be independently controlled. Consequently, these colloidal SU-8 rods can be used in both 3D confocal microscopy and optical trapping experiments while carefully tuning the effect of gravity. This is demonstrated by using confocal microscopy to image the liquid crystalline phases and the isotropic-nematic interface formed by the colloidal SU-8 rods and by optically trapping single rods in water. Finally, the simultaneous confocal imaging and optical manipulation of multiple SU-8 rods in the isotropic phase is shown.

5.
Proc Natl Acad Sci U S A ; 115(27): 6922-6927, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915026

ABSTRACT

The formation and kinetics of grain boundaries are closely related to the topological constraints imposed on their complex dislocation structure. Loop-shaped grain boundaries are unique structures to establish such a link because their overall topological "charge" is zero due to their null net Burgers vector. Here, we observe that a local rotational deformation of a 2D colloidal crystal with an optical vortex results in a grain boundary loop only if the product of its radius and misorientation exceeds a critical value. Above this value, the deformation is plastic and the grain boundary loop spontaneously shrinks at a rate that solely depends on this product, while otherwise, the deformation is elastically restored. We show that this elastic-to-plastic crossover is a direct consequence of the unique dislocation structure of grain boundary loops. At the critical value, the loop is structurally equivalent to the so-called "flower defect" and the shrinkage rate diverges. Our results thus reveal a general limit on the formation of grain boundary loops in 2D crystals and elucidate the central role of defects in both the onset of plasticity and the kinetics of grain boundaries.

6.
Adv Mater ; 28(36): 8001-8006, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27380320

ABSTRACT

A new colloidal system that consists of core-shell "probe" particles embedded in an optically transparent "host" particle suspension is developed. This system enables simultaneous fast confocal imaging and optical tweezing in dense 3D colloidal materials.

7.
J Phys Chem B ; 120(16): 3941-9, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27046043

ABSTRACT

We study the freezing of a dispersion of colloidal silica particles in water, focusing on the formation of segregated ice in the form of ice lenses. Local temperature measurements in combination with video microscopy give insight into the rich variety of factors that control ice lens formation. We observe the initiation of the lenses, their growth morphology, and their final thickness and spacing over a range of conditions, in particular the effect of the particle packing and the cooling rate. We find that increasing the particle density drastically reduces the thickness of lenses but has little effect on the lens spacing. Therefore, the fraction of segregated ice formed reduces. The effect of the cooling rate, which is the product of the temperature gradient and the pulling speed across the temperature gradient, depends on which parameter is varied. A larger temperature gradient causes ice lenses to be initiated more frequently, while a lower pulling speed allows for more time for ice lenses to grow: both increase the fraction of segregated ice. Surprisingly, we find that the growth rate of a lens does not depend on its undercooling. Finally, we have indications of pore ice in front of the warmest ice lens, which has important consequences for the interpretation of the measured trends. Our findings are relevant for ice segregation occurring in a wide range of situations, ranging from model lab experiments and theories to geological and industrial processes, like frost heave and frozen food production.

8.
Phys Rev Lett ; 108(24): 240601, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004250

ABSTRACT

Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronization. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.


Subject(s)
Colloids/chemistry , Models, Chemical , Periodicity , Hydrodynamics , Stochastic Processes
9.
J Biophotonics ; 3(4): 244-51, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20301124

ABSTRACT

The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary.


Subject(s)
Microspheres , Optical Tweezers , Rheology/methods , Algorithms , Colloids/chemistry , Microscopy , Rheology/instrumentation , Silicon Dioxide/chemistry , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...