Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 10(2): 283-299, 2024 02.
Article in English | MEDLINE | ID: mdl-38278950

ABSTRACT

O-linked ß-N-acetylglucosamine (O-GlcNAc) and O-fucose are two sugar-based post-translational modifications whose mechanistic role in plant signalling and transcriptional regulation is still largely unknown. Here we investigated how two O-glycosyltransferase enzymes of Arabidopsis thaliana, SPINDLY (SPY) and SECRET AGENT (SEC), promote the activity of the basic helix-loop-helix transcription factor SPATULA (SPT) during morphogenesis of the plant female reproductive organ apex, the style. SPY and SEC modify amino-terminal residues of SPT in vivo and in vitro by attaching O-fucose and O-GlcNAc, respectively. This post-translational regulation does not impact SPT homo- and heterodimerization events, although it enhances the affinity of SPT for the kinase PINOID gene locus and its transcriptional repression. Our findings offer a mechanistic example of the effect of O-GlcNAc and O-fucose on the activity of a plant transcription factor and reveal previously unrecognized roles for SEC and SPY in orchestrating style elongation and shape.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Fucose , Glycosylation , Plants/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
FEBS Lett ; 592(2): 172-178, 2018 01.
Article in English | MEDLINE | ID: mdl-29288494

ABSTRACT

Over the past decade, evidence has emerged suggesting a broader role for cytochrome c (Cyt c) in programmed cell death. Recently, we demonstrated the ability of Cyt c to inhibit the nucleosome assembly activity of histone chaperones SET/template-activating factor Iß and NAP1-related protein during DNA damage in humans and plants respectively. Here, we hypothesise a dual concentration-dependent function for nuclear Cyt c in response to DNA damage. We propose that low levels of highly cytotoxic DNA lesions - such as double-strand breaks - induce nuclear translocation of Cyt c, leading to the attenuation of nucleosome assembly and, thereby, increasing the time available for DNA repair. If DNA damage persists or is exacerbated, the nuclear Cyt c concentration would exceed a given threshold, causing the haem protein to block DNA remodelling altogether.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Cytochromes c/metabolism , Mitochondria/metabolism , Cell Nucleus/metabolism , DNA Damage , DNA Repair , Humans , Mitochondria/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Protein Transport , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...