Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 5(3)2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28885593

ABSTRACT

The impact of emerging contaminants in the presence of active pharmaceutical pollutants plays an important role in the persistence and activity of environmental bacteria. This manuscript focuses on the impact of amoxicillin functionalized iron oxide nanoparticles on bacterial growth, in the presence of dissolved organic carbon (humic acid). The impact of these emerging contaminants individually and collectively on the growth profiles of model gram positive and negative bacteria was tracked for 24 h. Results indicate exposure to subinhibitory concentrations of amoxicillin bound iron oxide nanoparticles, in the presence of humic acid, increase bacterial growth in Pseudomonas aeruginosa and Staphylococcus aureus. Accelerated bacterial growth was associated with an increase in iron ions, which have been shown to influence upregulation of cellular metabolism. Though iron oxide nanoparticles are often regarded as benign, this work demonstrates the distinguishable impact of amoxicillin bound iron oxide nanoparticles in the presence of dissolved organic carbon. The results indicate differential impacts of combined contaminants on bacterial growth, having potential implications for environmental and human health.

2.
Int J Mol Sci ; 16(10): 23482-516, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26437397

ABSTRACT

In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.


Subject(s)
Ferric Compounds/toxicity , Metal Nanoparticles/toxicity , Mutagens/toxicity , Animals , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...