Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 514(1): 30-48, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19260054

ABSTRACT

Eph/ephrin-receptor/ligand A and B families play a variety of roles during CNS development, including patterning the retinotectal projection. However, the alignment of their expression gradients with developing retinotectal maps and gradients of cellular development is not well understood in species whose midbrain tecta undergo a protracted anterior to posterior development. By using anatomical tracing methods and (3)H-thymidine neuronography, we have mapped the retinotectal projection and the spatiotemporal progression of tectal cellular development onto Eph/ephrin expression patterns in the tectum of larval Rana pipiens, as studied by means of in situ affinity analysis with fusion proteins. EphA expression is maximal in anterior tectum (and temporal retina); ephrin-A expression is maximal at the posterior pole (and nasal retina). EphB expression is graded in the early larva, where it is maximal in the posterior tectum just anterior to the posterior pole (and in the ventral retina). Tectal EphB expression becomes uniform at later stages and remains so in the adult, although its retinal expression remains maximal ventrally. In the early larva, EphA, EphB, and ephrin-A protein gradients are parallel to each other and align with the temporonasal axis of the retinal projection. The early EphB expression maximum overlaps the boundary between the mantle layer of newly postmitotic cells and the posterior, epithelial region of cell proliferation, suggesting that the expression maximum is associated with the initial migrations of the postmitotic cells. Ephrin-B expression was detected in the olfactory bulb and dorsal retina at all ages, but not in the tectum.


Subject(s)
Ephrins/metabolism , Rana pipiens/growth & development , Receptors, Eph Family/metabolism , Tectum Mesencephali/growth & development , Tectum Mesencephali/metabolism , Animals , Larva/metabolism , Prosencephalon/metabolism , Rana pipiens/metabolism , Retina/anatomy & histology , Retina/metabolism , Tectum Mesencephali/anatomy & histology , Visual Pathways/anatomy & histology
2.
Acta Neuropathol ; 113(4): 389-402, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17237937

ABSTRACT

Amyloid beta (Abeta) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer's disease to determine if intraneuronal Abeta immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Abeta immunoreactivity in neurons in infants and stable neuron-type specific Abeta immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4-13 aa and 8-17 aa of Abeta in neurons indicated that intraneuronal Abeta was mainly a product of alpha- and gamma-secretases (Abeta(17-40/42)). The presence of N-terminally truncated Abeta(17-40) and Abeta(17-42) in the control brains was confirmed by Western blotting and the identity of Abeta(17-40) was confirmed by mass spectrometry. The prevalence of products of alpha- and gamma -secretases in neurons and beta- and gamma-secretases in plaques argues against major contribution of Abeta-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Abeta(17-42) immunoreactivity was observed in structures with low susceptibility to fibrillar Abeta deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Abeta immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Abeta immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Abeta represents a product of normal neuronal metabolism.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology , Down Syndrome/metabolism , Intracellular Fluid/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Case-Control Studies , Child, Preschool , Down Syndrome/pathology , Female , Humans , Infant , Male , Middle Aged , Predictive Value of Tests
3.
Anal Biochem ; 340(2): 213-9, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15840493

ABSTRACT

The Ts65Dn segmentally trisomic mouse possesses an extra copy of a segment of chromosome 16 translocated to chromosome 17. This segment includes the mouse homolog of the Down syndrome critical region of human chromosome 21. The Ts65Dn mouse serves as a useful model to study the developmental regulation of the Down syndrome phenotype. To identify mice bearing the extra chromosome 16 segment, we developed a polymerase chain reaction (PCR) method as an alternative to karyotyping. Conditions under which segments of genes on chromosome 16 (App and Dyrk1a) could be coamplified with a control gene on chromosome 8 (Acta1) so that the yield of each PCR product was proportional to the amount of its template were determined. The amplification products were resolved and quantified by two methods. In the first method, the DNA segments were separated by agarose gel electrophoresis and stained with ethidium bromide. The fluorescence yields were quantified by photodensitometry. In the second method, the fragments were resolved and quantified by the high-performance DNA analysis system, a high-throughput, multichannel, microcapillary electrophoresis instrument. The results of both methods were within 10% of the expected ratio of 1.5. Application of these methods has allowed the maintenance of a Ts65Dn breeding colony through six generations and should permit the precise and efficient identification of trisomic and disomic animals at any developmental stage with minimally invasive procedures.


Subject(s)
Disease Models, Animal , Down Syndrome/genetics , Polymerase Chain Reaction/methods , Trisomy/genetics , Animals , Chromosomes, Mammalian/genetics , Electrophoresis, Capillary , Female , In Situ Hybridization, Fluorescence , Karyotyping , Male , Mice
4.
Biochemistry ; 42(40): 11682-92, 2003 Oct 14.
Article in English | MEDLINE | ID: mdl-14529278

ABSTRACT

The beta-amyloid peptide (Abeta) is a normal product of the proteolytic processing of its precursor (beta-APP). Normally, it elicits a very low humoral immune response; however, the aggregation of monomeric Abeta to form fibrillar Abeta amyloid creates a neo-epitope, to which antibodies are generated. Rabbits were injected with fibrillar human Abeta(1-42), and the resultant antibodies were purified and their binding properties characterized. The antibodies bound to an epitope in the first eight residues of Abeta and required a free amino terminus. Additional residues did not affect the affinity of the epitope as long as the peptide was unaggregated; the antibody bound Abeta residues 1-8, 1-11, 1-16, 1-28, 1-40, and 1-42 with similar affinities. In contrast, the antibodies bound approximately 1000-fold more tightly to fibrillar Abeta(1-42). Their enhanced affinity did not result from their bivalent nature: monovalent Fab fragments exhibited a similar affinity for the fibrils. Nor did it result from the particulate nature of the epitope: monomeric Abeta(1-16) immobilized on agarose and soluble Abeta(1-16) exhibited similar affinities for the antifibrillar antibodies. In addition, antibodies raised to four nonfibrillar peptides corresponding to internal Abeta sequences did not exhibit enhanced affinity for fibrillar Abeta(1-42). Antibodies directed to the C-terminus of Abeta bound poorly to fibrillar Abeta(1-42), which is consistent with models where the carboxyl terminus is buried in the interior of the fibril and the amino terminus is on the surface. When used as an immunohistochemical probe, the antifibrillar Abeta(1-42) IgG exhibited enhanced affinity for amyloid deposits in the cerebrovasculature. We hypothesize either that the antibodies recognize a specific conformation of the eight amino-terminal residues of Abeta, which is at least 1000-fold more favored in the fibril than in monomeric peptides, or that affinity maturation of the antibodies produces an additional binding site for the amino-terminal residues of an adjacent Abeta monomer. In vivo this specificity would direct the antibody primarily to fibrillar vascular amyloid deposits even in the presence of a large excess of monomeric Abeta or its precursor. This observation may explain the vascular meningeal inflammation that developed in Alzheimer's disease patients immunized with fibrillar Abeta. Passive immunization with an antibody directed to an epitope hidden in fibrillar Abeta and in the transmembrane region of APP might be a better choice in the search for an intervention to remove Abeta monomers without provoking an inflammatory response.


Subject(s)
Amyloid beta-Peptides/immunology , Binding Sites, Antibody , Peptide Fragments/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Antibodies, Monoclonal/metabolism , Antibody Affinity , Binding, Competitive/immunology , Brain/immunology , Brain/metabolism , Brain/pathology , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Epitopes/metabolism , Humans , Immunoglobulin Fab Fragments , Immunoglobulin G/metabolism , Immunohistochemistry , Molecular Sequence Data , Peptide Fragments/metabolism , Peptide Fragments/ultrastructure , Protein Binding/immunology
5.
Biochem Biophys Res Commun ; 305(2): 434-41, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12745094

ABSTRACT

We recently identified several ESTs that bind to the fragile X mental retardation protein (FMRP) in vitro. To determine whether they interacted in vivo we performed three-hybrid screens in a Saccharomyces cerevisiae histidine auxotroph. We demonstrate that two of the ESTs support growth on histidine and transduce beta-galactosidase activity when co-expressed with FMRP under selective growth conditions. In contrast, the iron response element (IRE) RNA does not. Likewise, the ESTs do not support growth or transduce beta-galactosidase activity when co-expressed with the iron response element binding protein (IRP). Each EST is relatively small and has 40% identity with a sequence in FMR1 mRNA harboring FMRP binding determinants. Interestingly, while neither the ESTs contain a G-quartet structural motif they do contain U-rich sequences that are found in mRNA with demonstrated in vitro binding and in vivo association with FMRP. This indicates that U-rich elements comprise another motif recognized by FMRP.


Subject(s)
Nerve Tissue Proteins/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins , Saccharomyces cerevisiae/genetics , Artificial Gene Fusion , Base Sequence , Binding Sites , Brain/metabolism , Expressed Sequence Tags , Fragile X Mental Retardation Protein , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Sequence Homology, Nucleic Acid , Two-Hybrid System Techniques
6.
J Biol Chem ; 278(18): 15669-78, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12594214

ABSTRACT

Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds tightly to recombinant human FMRP in vitro. Binding depended on protein determinants located primarily in the C-terminal end of hFMRP, but the hnRNP K homology domain influenced binding as well. When hFMRP was expressed in cultured cells, it dramatically reduced endogenous EF-1A protein expression but had no effect on EF-1A mRNA levels. In contrast, the translation of several other mRNAs, including those coding for dynamin and constitutive heat shock 70 protein, was not affected by the hFMRP expression. Most importantly, EF-1A mRNA and hFMR1 mRNA were coimmunoprecipitated with hFMRP. Finally, in fragile X lymphoblastoid cells in which hFMRP is absent, human EF-1A protein but not its corresponding mRNA is elevated compared with normal lymphoblastoid cells. These data suggest that hFMRP binds to EF-1A mRNA and also strongly argue that FMRP negatively regulates EF-1A expression in vivo.


Subject(s)
Fragile X Syndrome/metabolism , Glycine/analogs & derivatives , Nerve Tissue Proteins/metabolism , Peptide Elongation Factor 1/genetics , Protein Biosynthesis , RNA, Messenger/metabolism , RNA-Binding Proteins , Animals , COS Cells , Fragile X Mental Retardation Protein , Humans , Lymphocytes/metabolism , Peptide Elongation Factor 1/analysis , Peptide Elongation Factor 1/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...