Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28326682

ABSTRACT

Planarians have a long history in the fields of developmental and regenerative biology. These animals have also sparked interest in neuroscience due to their neuroanatomy, spectrum of simple behaviors, and especially, their almost unparalleled ability to generate new neurons after any type of injury. Research in adult planarians has revealed that neuronal subtypes homologous to those found in vertebrates are generated from stem cells throughout their lives. This feat is recapitulated after head amputation, wherein animals are capable of regenerating whole brains and regaining complete neural function. In this review, we summarize early studies on the anatomy and function of the planarian nervous system and discuss our present knowledge of the molecular mechanisms governing neurogenesis in planarians. Modern studies demonstrate that the transcriptional programs underlying neuronal specification are conserved in these remarkable organisms. Thus, planarians are outstanding models to investigate questions about how stem cells can replace neurons in vivo. WIREs Dev Biol 2017, 6:e266. doi: 10.1002/wdev.266 For further resources related to this article, please visit the WIREs website.


Subject(s)
Nervous System/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/cytology , Planarians/growth & development , Animals , Fresh Water
2.
Cell Rep ; 17(9): 2488-2501, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27880917

ABSTRACT

Reversible phosphorylation is a fundamental regulatory mechanism, intricately coordinated by kinases and phosphatases, two classes of enzymes widely disrupted in human disease. To better understand the functions of the relatively understudied phosphatases, we have used complementary affinity purification and proximity-based interaction proteomics approaches to generate a physical interactome for 140 human proteins harboring phosphatase catalytic domains. We identified 1,335 high-confidence interactions (1,104 previously unreported), implicating these phosphatases in the regulation of a variety of cellular processes. Systematic phenotypic profiling of phosphatase catalytic and regulatory subunits revealed that phosphatases from every evolutionary family impinge on mitosis. Using clues from the interactome, we have uncovered unsuspected roles for DUSP19 in mitotic exit, CDC14A in regulating microtubule integrity, PTPRF in mitotic retraction fiber integrity, and DUSP23 in centriole duplication. The functional phosphatase interactome further provides a rich resource for ascribing functions for this important class of enzymes.


Subject(s)
Mitosis , Phosphoric Monoester Hydrolases/metabolism , Protein Interaction Maps , Biological Evolution , Centrioles/metabolism , Dual-Specificity Phosphatases/metabolism , HeLa Cells , Humans , Phenotype , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Subunits/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Reproducibility of Results
3.
Elife ; 52016 11 19.
Article in English | MEDLINE | ID: mdl-27864883

ABSTRACT

The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.


Subject(s)
Brain/physiology , Hedgehog Proteins/metabolism , Neurogenesis , Neurons/physiology , Platyhelminths/physiology , Animals , Homeodomain Proteins/metabolism , Transcription Factors/metabolism
4.
Evodevo ; 7: 7, 2016.
Article in English | MEDLINE | ID: mdl-27034770

ABSTRACT

BACKGROUND: Freshwater planarians are well known for their regenerative abilities. Less well known is how planarians maintain spatial patterning in long-lived adult animals or how they re-pattern tissues during regeneration. HOX genes are good candidates to regulate planarian spatial patterning, yet the full complement or genomic clustering of planarian HOX genes has not yet been described, primarily because only a few have been detectable by in situ hybridization, and none have given morphological phenotypes when knocked down by RNAi. RESULTS: Because the planarian Schmidtea mediterranea (S. mediterranea) is unsegmented, appendage less, and morphologically simple, it has been proposed that it may have a simplified HOX gene complement. Here, we argue against this hypothesis and show that S. mediterranea has a total of 13 HOX genes, which represent homologs to all major axial categories, and can be detected by whole-mount in situ hybridization using a highly sensitive method. In addition, we show that planarian HOX genes do not cluster in the genome, yet 5/13 have retained aspects of axially restricted expression. Finally, we confirm HOX gene axial expression by RNA deep-sequencing 6 anterior-posterior "zones" of the animal, which we provide as a dataset to the community to discover other axially restricted transcripts. CONCLUSIONS: Freshwater planarians have an unappreciated HOX gene complexity, with all major axial categories represented. However, we conclude based on adult expression patterns that planarians have a derived body plan and their asexual lifestyle may have allowed for large changes in HOX expression from the last common ancestor between arthropods, flatworms, and vertebrates. Using our in situ method and axial zone RNAseq data, it should be possible to further understand the pathways that pattern the anterior-posterior axis of adult planarians.

5.
Elife ; 42015 Jun 26.
Article in English | MEDLINE | ID: mdl-26114597

ABSTRACT

Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment.


Subject(s)
Cell Differentiation , RNA-Binding Proteins/metabolism , Stem Cells/physiology , Animals , Epithelial Cells/physiology , Gene Expression Profiling , Genetic Testing , Planarians , RNA Interference , Transcription, Genetic
6.
Biol Open ; 3(7): 627-34, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24950970

ABSTRACT

Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior.

7.
Development ; 140(17): 3577-88, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23903188

ABSTRACT

In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of the adult animal. Here we show that two homeodomain transcription factor homologs, Smed-lhx1/5-1 and Smed-pitx, are required for the maintenance and regeneration of serotonergic neurons in planarians. When either lhx1/5-1 or pitx was knocked down by RNA interference, the expression of multiple canonical markers for serotonergic neurons was lost. Surprisingly, the loss of serotonergic function uncovered a role for these neurons in the coordination of motile cilia on the ventral epidermis of planarians that are required for their nonmuscular gliding locomotion. Finally, we show that in addition to its requirement in serotonergic neurons, Smed-pitx is required for proper midline patterning during regeneration, when it is required for the expression of the midline-organizing molecules Smed-slit in the anterior and Smed-wnt1 in the posterior.


Subject(s)
LIM-Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Planarians/physiology , Regeneration/physiology , Serotonergic Neurons/physiology , Animals , Base Sequence , Bayes Theorem , Computational Biology , High-Throughput Nucleotide Sequencing , In Situ Hybridization , LIM-Homeodomain Proteins/genetics , Likelihood Functions , Microscopy, Video , Models, Genetic , Molecular Sequence Data , Paired Box Transcription Factors/genetics , Phylogeny , RNA Interference
8.
Stem Cells ; 30(8): 1734-45, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22696458

ABSTRACT

Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency.


Subject(s)
Pluripotent Stem Cells/physiology , Animals , Cell Differentiation/genetics , Gene Expression Profiling , Humans , Mammals , Mice , Planarians , Pluripotent Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...