Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24740383

ABSTRACT

We examined the limb kinematics and motor patterns that underlie sensory-evoked turning locomotion in red-eared turtles. Intact animals were held by a band-clamp in a water-filled tank. Turn-swimming was evoked by slowly rotating turtles to the right or left via a motor connected to the shaft of the band-clamp. Animals executed sustained forward turn-swimming against the direction of the imposed rotation. We recorded video of turn-swimming and computer-analyzed the limb and head movements. In a subset of turtles, we also recorded electromyograms from identified limb muscles. Turning exhibited a stereotyped pattern of (1) coordinated forward swimming in the hindlimb and forelimb on the outer side of the turn, (2) back-paddling in the hindlimb on the inner side, (3) a nearly stationary, "braking" forelimb on the inner side, and (4) neck bending toward the direction of the turn. Reversing the rotation caused animals to switch the direction of their turns and the asymmetric pattern of right and left limb activities. Preliminary evidence suggested that vestibular inputs were sufficient to drive the behavior. Sensory-evoked turning may provide a useful experimental platform to examine the brainstem commands and spinal neural networks that underlie the activation and switching of different locomotor forms.


Subject(s)
Extremities/physiology , Muscle, Skeletal/physiology , Swimming/physiology , Turtles/physiology , Animals , Biomechanical Phenomena , Electromyography , Physical Stimulation , Rotation
2.
Neurosci Lett ; 441(1): 105-9, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18597937

ABSTRACT

We assessed the locomotor capacity of the left half of the spinal cord hindlimb enlargement in low-spinal turtles. Forward swimming was evoked in the left hindlimb by electrical stimulation of the right dorsolateral funiculus (DLF) at the anterior end of the third postcervical spinal segment (D3). Animals were held by a band-clamp in a water-filled tank so that hindlimb movements could be recorded from below with a digital video camera. Left hindlimb hip and knee movements were tracked while electromyograms (EMGs) were recorded from left hip and knee muscles. In turtles with intact spinal cords, electrical stimulation of the right D3 DLF evoked robust forward swimming movements of the left hindlimb, characterized by rhythmic alternation between hip flexor (HF) and hip extensor (HE) EMG discharge, with knee extensor (KE) bursts occurring during the latter part of each HE-off phase. After removing the right spinal hemi-enlargement (D8-S2), DLF stimulation still evoked rhythmic locomotor movements and EMG bursts in the left hindlimb that included HF-HE alternation and KE discharge. However, post-surgical movements and EMG bursts had longer cycle periods, and movements showed lower amplitudes compared to controls. These results show that (1) sufficient locomotor CPG circuitry resides within the turtle spinal hemi-enlargement to drive major components of the forward swim motor pattern, (2) contralateral circuitry contributes to the excitation of the locomotor CPG for a given limb, and (3) a sufficient portion of the descending DLF pathway crosses over to the contralateral cord anterior to the hindlimb enlargement to activate swimming.


Subject(s)
Electric Stimulation/methods , Functional Laterality/physiology , Locomotion/radiation effects , Spinal Cord/radiation effects , Animals , Behavior, Animal/radiation effects , Dose-Response Relationship, Radiation , Electromyography , Evoked Potentials/radiation effects , Hindlimb/innervation , Hindlimb/radiation effects , Locomotion/physiology , Statistics, Nonparametric , Turtles/physiology
3.
J Neurophysiol ; 99(4): 1953-68, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18272877

ABSTRACT

We performed mechanical lesions of the midbody (D2-D3; second to third postcervical spinal segments) spinal cord in otherwise intact turtles to locate spinal cord pathways that 1) activate and control the amplitude of voluntary hindlimb swimming movements and 2) coordinate hindlimb swimming with the movement of other limbs. Pre- and postlesion turtles were held by a band clamp around the carapace just beneath the water surface in a clear Plexiglas tank and videotaped from below so that kinematic measurements could be made of voluntary forward swimming with motion analysis software. Movements of the forelimbs (wrists) and hindlimbs (knees and ankles) were tracked relative to stationary reference points on the plastron to obtain bilateral measurements of hip and forelimb angles as functions of time along with foot trajectories. We measured changes in limb movement amplitude, cycle period, and interlimb phase before and after spinal lesions. Our results indicate that locomotor command signals that activate and regulate the amplitude of voluntary hindlimb swimming travel primarily in the dorsolateral funiculus (DLF) at the D2-D3 level and cross over to drive contralateral hindlimb movements. This suggests that electrical stimulation of the D3 DLF, which was previously shown to evoke swimming movements in the contralateral hindlimb of low-spinal turtles, activated the same locomotor command pathways that the animal uses during voluntary behavior. We also show that forelimb-hindlimb coordination is maintained by longitudinal spinal pathways that are largely confined to the ventrolateral funiculus (VLF) and mediate phase coupling of ipsilateral limbs, presumably by interenlargement propriospinal fibers.


Subject(s)
Efferent Pathways/physiology , Hindlimb/physiology , Movement/physiology , Spinal Cord/physiology , Swimming/physiology , Turtles/physiology , Animals , Biomechanical Phenomena , Data Interpretation, Statistical , Electric Stimulation , Forelimb/innervation , Forelimb/physiology , Functional Laterality/physiology , Hindlimb/innervation , Spinal Cord Injuries/physiopathology
4.
J Neurophysiol ; 98(4): 2223-31, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17715193

ABSTRACT

We examined the coordination between right and left hindlimbs during voluntary forward swimming in adult red-eared turtles, before and after midsagittal section of the spinal cord hindlimb enlargement (segments D8-S2) or the enlargement plus the first preenlargement segment (D7-S2). Our purpose was to assess the role of crossed commissural axons in these segments for right-left hindlimb alternation during voluntary locomotion. Midsagittal splitting severed commissural fibers and separated the right and left halves of the posterior spinal cord. Adult turtles (n = 9) were held by a band clamp around the shell in a water-filled tank while digital video of forward swimming was recorded from below and computer analyzed with motion analysis software. In a subset of these animals (n = 5), we also recorded electromyograms from hip extensor and/or hip flexor muscles on both sides. Surprisingly, splitting spinal segments D8-S2 or D7-S2 did not affect the strength of out-of-phase coordination between right and left hindlimbs, although hindlimb movement amplitudes were reduced compared with presurgical controls. These results show that commissural axons in the hindlimb enlargement and preenlargement cord are not necessary for right-left hindlimb alternation during voluntary swimming. We suggest that alternating propriospinal drive from the right and left sides of the forelimb enlargement maintains the out-of-phase coordination of right and left hindlimbs in the bisected-cord preparation. Our data support the hypothesis that descending propriospinal (forelimb-hindlimb) and crossed commissural (hindlimb-hindlimb) spinal cord pathways function together as redundant mechanisms to sustain right-left hindlimb alternation during turtle locomotion.


Subject(s)
Efferent Pathways/physiology , Hindlimb/innervation , Spinal Cord/physiology , Swimming/physiology , Turtles/physiology , Animals , Axons/physiology , Data Interpretation, Statistical , Electromyography , Functional Laterality/physiology , Muscle Denervation , Neurons, Afferent/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...