Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 8(1): 26, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438821

ABSTRACT

An increasingly strong connection between artificial intelligence and medicine has enabled the development of predictive models capable of supporting physicians' decision-making. Artificial intelligence encompasses much more than machine learning, which nevertheless is its most cited and used sub-branch in the last decade. Since most clinical problems can be modeled through machine learning classifiers, it is essential to discuss their main elements. This review aims to give primary educational insights on the most accessible and widely employed classifiers in radiology field, distinguishing between "shallow" learning (i.e., traditional machine learning) algorithms, including support vector machines, random forest and XGBoost, and "deep" learning architectures including convolutional neural networks and vision transformers. In addition, the paper outlines the key steps for classifiers training and highlights the differences between the most common algorithms and architectures. Although the choice of an algorithm depends on the task and dataset dealing with, general guidelines for classifier selection are proposed in relation to task analysis, dataset size, explainability requirements, and available computing resources. Considering the enormous interest in these innovative models and architectures, the problem of machine learning algorithms interpretability is finally discussed, providing a future perspective on trustworthy artificial intelligence.Relevance statement The growing synergy between artificial intelligence and medicine fosters predictive models aiding physicians. Machine learning classifiers, from shallow learning to deep learning, are offering crucial insights for the development of clinical decision support systems in healthcare. Explainability is a key feature of models that leads systems toward integration into clinical practice. Key points • Training a shallow classifier requires extracting disease-related features from region of interests (e.g., radiomics).• Deep classifiers implement automatic feature extraction and classification.• The classifier selection is based on data and computational resources availability, task, and explanation needs.


Subject(s)
Artificial Intelligence , Deep Learning , Algorithms , Machine Learning , Neural Networks, Computer
2.
Sensors (Basel) ; 23(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37420843

ABSTRACT

Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggressive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are highly promising. Different classifier configurations are considered and analyzed in order to find the most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of 0.967, and AUROC of 0.948.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Dermoscopy/methods , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , DNA Damage
SELECTION OF CITATIONS
SEARCH DETAIL
...