Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(21): 216502, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856271

ABSTRACT

Using spin-echo nuclear magnetic resonance in the model transverse field Ising system TmVO_{4}, we show that low frequency quantum fluctuations at the quantum critical point have a very different effect on ^{51}V nuclear spins than classical low-frequency noise or fluctuations that arise at a finite temperature critical point. Spin echoes filter out the low-frequency classical noise but not the quantum fluctuations. This allows us to directly visualize the quantum critical fan and demonstrate the persistence of quantum fluctuations at the critical coupling strength in TmVO_{4} to high temperatures in an experiment that remains transparent to finite temperature classical phase transitions. These results show that while dynamical decoupling schemes can be quite effective in eliminating classical noise in a qubit, a quantum critical environment may lead to rapid entanglement and decoherence.

2.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38568022

ABSTRACT

We present nuclear magnetic resonance data in BaFe2As2 in the presence of pulsed strain fields that are interleaved in time with the radio frequency excitation pulses. In this approach, the preceding nuclear magnetization acquires a phase shift that is proportional to the strain and pulse time. The sensitivity of this approach is limited by the homogeneous decoherence time, T2, rather than the inhomogeneous linewidth. We measure the nematic susceptibility as a function of temperature and demonstrate a three orders of magnitude improvement in sensitivity. This approach will enable studies of the strain response in a broad range of materials that previously were inaccessible due to inhomogeneous broadening.

3.
J Magn Reson ; 331: 107050, 2021 10.
Article in English | MEDLINE | ID: mdl-34507236

ABSTRACT

We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for ß≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.

4.
Nat Commun ; 9(1): 1058, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535323

ABSTRACT

The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagnetic phase of BaFe2As2 acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.

5.
Rev Sci Instrum ; 88(10): 103902, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092471

ABSTRACT

We present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75As NMR in BaFe2As2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.

6.
Phys Rev Lett ; 116(10): 107202, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015507

ABSTRACT

We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe_{2}As_{2} single crystals. Both the ^{75}As and ^{31}P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

7.
Phys Rev Lett ; 111(20): 207201, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24289706

ABSTRACT

We present 75As nuclear magnetic resonance data from measurements of a series of Ba(Fe(1-x)Co(x))2As2 crystals with 0.00≤x≤0.075 that reveals the coexistence of frozen antiferromagnetic domains and superconductivity for 0.060≤x≤0.071. Although bulk probes reveal no long range antiferromagnetic order beyond x=0.06, we find that the local spin dynamics reveal no qualitative change across this transition. The characteristic domain sizes vary by more than an order of magnitude, reaching a maximum variation at x=0.06. This inhomogeneous glassy dynamics may be an intrinsic response to the competition between superconductivity and antiferromagnetism in this system.

8.
Phys Rev Lett ; 102(22): 227601, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19658902

ABSTRACT

We report 75As NMR measurements in CaFe2As2, made under applied pressures up to 0.83 GPa produced by a standard clamp pressure cell. Our data reveal phase segregation of paramagnetic and antiferromagnetic (AFM) phases over a range of pressures, with the AFM phase more than 90% dominant at low temperatures. In situ rf susceptibility measurements indicate the presence of superconductivity. 75As spin-lattice relaxation experiments indicate that the 75As nuclei sample the superconductivity while in the magnetically ordered environment.

9.
Phys Rev Lett ; 101(4): 047003, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764358

ABSTRACT

We have performed 75As nuclear magnetic resonance measurements on aligned powders of the new LaFeAsO0.9F0.1 superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggests that superconducting vortices contribute to the relaxation rate when the field is parallel to the c axis but not for the perpendicular direction.

10.
Phys Rev Lett ; 99(14): 146402, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930691

ABSTRACT

The heavy fermion superconductor CeCoIn5 can be tuned between superconducting and antiferromagnetic ground states by hole doping with Cd. Nuclear magnetic resonance data indicate that these two orders coexist microscopically with an ordered moment approximately 0.7 microB. As the ground state evolves, there is no change in the low-frequency spin dynamics in the disordered state. These results suggest that the magnetism emerges locally in the vicinity of the Cd dopants.

11.
Phys Rev Lett ; 98(3): 036402, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17358701

ABSTRACT

We present NMR data in the normal and superconducting states of CeCoIn5 for fields close to H(c2)(0)=11.8 T in the ab plane. Recent experiments identified a first-order transition from the normal to superconducting state for H>10.5 T, and a new thermodynamic phase below 290 mK within the superconducting state. We find that the Knight shifts of the In(1), In(2), and the Co are discontinuous across the first-order transition and the magnetic linewidths increase dramatically. The broadening differs for the three sites, unlike the expectation for an Abrikosov vortex lattice, and suggests the presence of static spin moments in the vortex cores. In the low-temperature and high-field phase, the broad NMR lineshapes suggest ordered local moments, rather than a long-wavelength quasiparticle spin density modulation expected for an FFLO phase.

12.
Phys Rev Lett ; 96(1): 017002, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486499

ABSTRACT

We report 17O nuclear-magnetic-resonance (NMR) results in the stripe ordered La(1.8-x)Eu0.2Sr(x)CuO4 system. Below a temperature T(q) approximately 80 K, the local electric field gradient and the absolute intensity of the NMR signal of the planar O site exhibit a dramatic decrease. We interpret these results as microscopic evidence for a spatially inhomogeneous charge distribution, where the NMR signal from O sites in the domain walls of the spin density modulation are wiped out due to large hyperfine fields, and the remaining signal arises from the intervening Mott insulating regions.

13.
Nature ; 434(7033): 622-5, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-15800618

ABSTRACT

In the Bardeen-Cooper-Schrieffer theory of superconductivity, electrons form (Cooper) pairs through an interaction mediated by vibrations in the underlying crystal structure. Like lattice vibrations, antiferromagnetic fluctuations can also produce an attractive interaction creating Cooper pairs, though with spin and angular momentum properties different from those of conventional superconductors. Such interactions have been implicated for two disparate classes of materials--the copper oxides and a set of Ce- and U-based compounds. But because their transition temperatures differ by nearly two orders of magnitude, this raises the question of whether a common pairing mechanism applies. PuCoGa5 has a transition temperature intermediate between those classes and therefore may bridge these extremes. Here we report measurements of the nuclear spin-lattice relaxation rate and Knight shift in PuCoGa5, which demonstrate that it is an unconventional superconductor with properties as expected for antiferromagnetically mediated superconductivity. Scaling of the relaxation rates among all of these materials (a feature not exhibited by their Knight shifts) establishes antiferromagnetic fluctuations as a likely mechanism for their unconventional superconductivity and suggests that related classes of exotic superconductors may yet be discovered.

14.
Nature ; 428(6982): 542-5, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15057827

ABSTRACT

Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

15.
Phys Rev Lett ; 90(22): 227202, 2003 Jun 06.
Article in English | MEDLINE | ID: mdl-12857337

ABSTRACT

We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.

16.
Phys Rev Lett ; 85(3): 642-5, 2000 Jul 17.
Article in English | MEDLINE | ID: mdl-10991360

ABSTRACT

We report Cu and La nuclear magnetic resonance measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the "wipeout" of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate.

17.
J Magn Reson ; 130(2): 186-94, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9515089

ABSTRACT

Measurement of T2G, the Gaussian component of the spin-echo envelope of planar Cu nuclei in high-temperature superconductors, gives important information about the real part of the Cu electron spin susceptibility. In the traditional picture of the planar Cu echo decay, the internuclear coupling is assumed to remain static with respect to spin-lattice relaxation and mutual exchange fluctuations. In some circumstances, however, this assumption breaks down. We calculate the internuclear corrections arising from spin-lattice relaxation to the conventional theory of T2G and show that T2G can be easily corrected for these effects. We argue that mutual exchanges due to the perpendicular indirect couplings are suppressed in these materials. For YBa2Cu4O8, we find a correction on the order of 10% in T2g and using the corrected values we find that the isotope ration 63T2G/65T2G agrees with theory.


Subject(s)
Copper/chemistry , Magnetic Resonance Spectroscopy , Spin Labels , Temperature , Anisotropy , Electric Conductivity , Models, Chemical , Normal Distribution , Thermodynamics
18.
J Magn Reson ; 135(2): 273-9, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9878457

ABSTRACT

A new double resonance probe design for NMR experiments for systems with close resonance frequencies is introduced. The design is based on two coupled resonators and was extensively tested on magnetically aligned powders of several high temperature superconductors by performing double resonance experiments between the 65Cu and 63Cu isotopes as well as between transitions of different magnetic quantum number of the same spin. The probe's performance approaches that of a single resonance circuit and it has only 4 variable tuning/matching elements.


Subject(s)
Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...