Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36291916

ABSTRACT

The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2-negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.

2.
Int J Mol Sci ; 23(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35409043

ABSTRACT

Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Exosomes , MicroRNAs , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Exosomes/metabolism , Female , Humans , MicroRNAs/metabolism , Prognosis , Quality of Life
3.
Fluids Barriers CNS ; 17(1): 31, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32321535

ABSTRACT

BACKGROUND: The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB). METHODS: We adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro. RESULTS: The BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment. CONCLUSION: We demonstrate that the CD34+ cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Neoplasms/blood , Breast Neoplasms/blood , Chemokine CX3CL1/blood , Chemokine CXCL13/blood , Models, Biological , Aged , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Cells, Cultured , Female , Humans , Middle Aged , Neoplasm Metastasis
4.
Curr Pharm Des ; 26(13): 1417-1427, 2020.
Article in English | MEDLINE | ID: mdl-32175838

ABSTRACT

Brain metastases are a major cause of death in breast cancer patients. A key event in the metastatic progression of breast cancer in the brain is the migration of cancer cells across the blood-brain barrier (BBB). The BBB is a natural barrier with specialized functions that protect the brain from harmful substances, including antitumor drugs. Extracellular vesicles (EVs) sequestered by cells are mediators of cell-cell communication. EVs carry cellular components, including microRNAs that affect the cellular processes of target cells. Here, we summarize the knowledge about microRNAs known to play a significant role in breast cancer and/or in the BBB function. In addition, we describe previously established in vitro BBB models, which are a useful tool for studying molecular mechanisms involved in the formation of brain metastases.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , Extracellular Vesicles , MicroRNAs , Blood-Brain Barrier , Brain , Breast Neoplasms/genetics , Humans , MicroRNAs/genetics , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...