Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Care ; 42(1): 85-92, 2019 01.
Article in English | MEDLINE | ID: mdl-30305345

ABSTRACT

OBJECTIVE: This study characterized the pharmacokinetics (PK), pharmacodynamics (PD), and endogenous (hepatic) glucose production (EGP) of clinical doses of glargine U300 (Gla-300) and glargine U100 (Gla-100) under steady-state (SS) conditions in type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS: T1DM subjects (N = 18, age 40 ± 12 years, T1DM duration 26 ± 12 years, BMI 23.4 ± 2 kg/m2, A1C 7.19 ± 0.52% [55 ± 5.7 mmol · mol-1-1]) were studied after 3 months of Gla-300 or Gla-100 (evening dosing) titrated to fasting euglycemia (random, crossover) with the euglycemic clamp using individualized doses (Gla-300 0.35 ± 0.08, Gla-100 0.28 ± 0.07 units · kg-1). RESULTS: Plasma free insulin concentrations (free immunoreactive insulin area under the curve) were equivalent over 24 h with Gla-300 versus Gla-100 (point estimate 1.11 [90% CI 1.03; 1.20]) but were reduced in the first 6 h (0.91 [90% CI 0.86; 0.97]) and higher in the last 12 h postdosing (1.38 [90% CI 1.21; 1.56]). Gla-300 and Gla-100 both maintained 24 h euglycemia (0.99 [90% CI 0.98; 1.0]). The glucose infusion rate was equivalent over 24 h (1.03 [90% CI 0.88; 1.21]) but was lower in first (0.77 [90% CI 0.62; 0.95]) and higher (1.53 [90% CI 1.23; 1.92]) in the second 12 h with Gla-300 versus Gla-100. EGP was less suppressed during 0-6 h but more during 18-24 h with Gla-300. PK and PD within-day variability (fluctuation) was 50% and 17% lower with Gla-300. CONCLUSIONS: Individualized, clinical doses of Gla-300 and Gla-100 resulted in a similar euglycemic potential under SS conditions. However, Gla-300 exhibited a more stable profile, with lower variability and more physiological modulation of EGP compared with Gla-100.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/drug therapy , Insulin Glargine/administration & dosage , Insulin Glargine/pharmacokinetics , Adult , Body Mass Index , Cross-Over Studies , Dose-Response Relationship, Drug , Fasting , Female , Glucose Clamp Technique , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Insulin/blood , Liver/metabolism , Male , Middle Aged , Single-Blind Method
2.
Mutagenesis ; 26(3): 359-69, 2011 May.
Article in English | MEDLINE | ID: mdl-21112930

ABSTRACT

The International Agency for Research on Cancer has classified several antineoplastic drugs in Group 1 (human carcinogens), among which chlorambucil, cyclophosphamide (CP) and tamoxifen, Group 2A (probable human carcinogens), among which cisplatin, etoposide, N-ethyl- and N-methyl-N-nitrosourea, and Group 2B (possible human carcinogens), among which bleomycins, merphalan and mitomycin C. The widespread use of these mutagenic/carcinogenic drugs in the treatment of cancer has led to anxiety about possible genotoxic hazards to medical personnel handling these drugs. The aim of the present study was to evaluate work environment contamination by antineoplastic drugs in a hospital in Central Italy and to assess the genotoxic risks associated with antineoplastic drug handling. The study group comprised 52 exposed subjects and 52 controls. Environmental contamination was assessed by taking wipe samples from different surfaces in preparation and administration rooms and nonwoven swabs were used as pads for the surrogate evaluation of dermal exposure, 5-fluorouracil and cytarabine were chosen as markers of exposure to antineoplastic drugs in the working environment. The actual exposure to antineoplastic drugs was evaluated by determining the urinary excretion of CP. The extent of primary, oxidative and excision repaired DNA damage was measured in peripheral blood leukocytes with the alkaline comet assay. To evaluate the role, if any, of genetic variants in the extent of genotoxic effects related to antineoplastic drug occupational exposure, the study subjects were genotyped for GSTM1, GSTT1, GSTP1 and TP53 polymorphisms. Primary DNA damage significantly increased in leukocytes of exposed nurses compared to controls. The use of personal protective equipment (i.e. gloves and/mask) was associated with a decrease in the extent of primary DNA damage.


Subject(s)
Antineoplastic Agents/analysis , Antineoplastic Agents/toxicity , Cancer Care Facilities , DNA Damage/genetics , Nursing Staff, Hospital , Occupational Exposure/analysis , Comet Assay , Cytarabine/analysis , Cytarabine/urine , Fluorouracil/analysis , Genotype , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Humans , Italy , Occupational Exposure/statistics & numerical data , Polymorphism, Restriction Fragment Length , Regression Analysis , Statistics, Nonparametric , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...