Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831036

ABSTRACT

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.

2.
Res Sq ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131790

ABSTRACT

Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.

3.
Protein Sci ; 32(3): e4579, 2023 03.
Article in English | MEDLINE | ID: mdl-36715022

ABSTRACT

In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.


Subject(s)
Chlorophyll , Photosynthesis , Chlorophyll/chemistry , Light-Harvesting Protein Complexes/chemistry , Molecular Dynamics Simulation
4.
Photochem Photobiol Sci ; 22(1): 195-217, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36208411

ABSTRACT

The catastrophic consequences of increased power consumption, such as drastically rising CO2 levels, natural disasters, environmental pollution and dependence on fossil fuels supplied by countries with totalitarian regimes, illustrate the urge to develop sustainable technologies for energy generation. Photocatalysis presents eco-friendly means for fuels production via solar-to-chemical energy conversion. The conversion efficiency of a photocatalyst critically depends on charge carrier processes taking place in the ultrafast time regime. Transient absorption spectroscopy (TAS) serves as a perfect tool to track those processes. The spectral and kinetic characterization of charge carriers is indispensable for the elucidation of photocatalytic mechanisms and for the development of new materials. Hence, in this review, we will first present the basics of TAS and subsequently discuss the procedure required for the interpretation of the transient absorption spectra and transient kinetics. The discussion will include specific examples for charge carrier processes occurring in conventional and plasmonic semiconductors.


Subject(s)
Environmental Pollution , Solar Energy , Kinetics , Spectrum Analysis
5.
ACS Appl Mater Interfaces ; 12(27): 30365-30380, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32525294

ABSTRACT

Zero-valent copper (Cu0) is a promising co-catalyst in semiconductor-based photocatalysis as it is inexpensive and exhibits electronic properties similar to those of Ag and Au. However, its practical application in photocatalytic hydrogen production is limited by its susceptibility to oxidation, forming less active Cu species. Herein, we have carried out in situ encapsulation of Cu0 nanoparticles with N-graphitic carbon layers (14.4% N) to stabilize Cu0 nanoparticles (N/C-coated Cu) and improve the electronic communication with a TiO2 photocatalyst. A facile solvothermal procedure is used to coat the Cu0 nanoparticles at 200 °C, while graphitization is achieved by calcination at 550 °C under an inert atmosphere. The resultant N/C-coated Cu/TiO2 composites outperform the uncoated Cu counterparts, exhibiting a 27-fold enhancement of the hydrogen evolution rate compared to TiO2 and achieving a rate of 19.03 mmol g-1 h-1 under UV-vis irradiation. Likewise, the N/C-coated Cu co-catalyst exhibits a less negative onset potential of -0.05 V toward hydrogen evolution compared to uncoated Cu (ca. -0.30 V). This superior activity is attributed to coating Cu0 with N/C, which enhances the stability, electronic communication with TiO2, conductivity, and interfacial charge transfer processes. The reported synthetic approach is simple and scalable, yielding an efficient and affordable Cu0 co-catalyst for TiO2.

6.
J Phys Condens Matter ; 31(34): 345701, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31071697

ABSTRACT

We propose two new members of the mullite-type family, SnAlBO4 and SnGaBO4, and carry out an in-depth study of their crystal properties using the hybrid method PW1PW. Both are isostructural to PbMBO4 (M = Fe, Mn, Al, Ga), which show axial negative linear compressibility (ANLC), among other interesting features. We find that, although Sn2+ is susceptible of being oxidized by oxygen, a suitable range of experimental parameters exists in which the compounds could be synthesized. We observe absence of ANLC below 20 GPa and explain it by the small space occupied by the lone electron pairs, as indicated by the small length of the corresponding Liebau Density Vectors. In agreement with this fact, the structures present a low number of negative mode-Grüneisen parameters, which may also suggest lack of negative thermal expansion. The electronic properties show a remarkable anisotropic behaviour, with a strong dependence of the absorption spectra on light polarization direction.

7.
J Phys Chem Lett ; 6(19): 3903-10, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722891

ABSTRACT

The structuring of materials in the form of photonic crystals for photocatalytic applications is a quite new strategy aiming to enhance the performance of the photocatalysts at wavelength ranges where their absorption is poor. It is of particular interest to successfully manufacture an efficient photocatalytic system that could make use of solar light. Thus, the key of the strategy is the "slow photon effect", occurring at the edges of a forbidden band for photons. In this Perspective we have chosen some questions that we consider of relevance and that are well worth being addressed both theoretically and experimentally. It is the aim of this discussion to eventually lead to a more productive use of inverse opals as photonic photocatalytic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...