Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Nanotechnol ; 17(6): 661-669, 2022 06.
Article in English | MEDLINE | ID: mdl-35393598

ABSTRACT

Physico-chemical characteristics of engineered nanomaterials are known to be important in determining the impact on organisms but effects are equally dependent upon the characteristics of the organism exposed. Species sensitivity may vary by orders of magnitude, which could be due to differences in the type or magnitude of the biochemical response, exposure or uptake of nanomaterials. Synthesizing conclusions across studies and species is difficult as multiple species are not often included in a study, and differences in batches of nanomaterials, the exposure duration and media across experiments confound comparisons. Here three model species, Danio rerio, Daphnia magna and Chironomus riparius, that differ in sensitivity to lithium cobalt oxide nanosheets are found to differ in immune-response, iron-sulfur protein and central nervous system pathways, among others. Nanomaterial uptake and dissolution does not fully explain cross-species differences. This comparison provides insight into how biomolecular responses across species relate to the varying sensitivity to nanomaterials.


Subject(s)
Nanostructures , Water Pollutants, Chemical , Animals , Daphnia/metabolism , Transcriptome , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/pharmacology
3.
Chem Res Toxicol ; 34(11): 2287-2297, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34724609

ABSTRACT

Growing evidence across organisms points to altered energy metabolism as an adverse outcome of metal oxide nanomaterial toxicity, with a mechanism of toxicity potentially related to the redox chemistry of processes involved in energy production. Despite this evidence, the significance of this mechanism has gone unrecognized in nanotoxicology due to the field's focus on oxidative stress as a universal─but nonspecific─nanotoxicity mechanism. To further explore metabolic impacts, we determined lithium cobalt oxide's (LCO's) effects on these pathways in the model organism Daphnia magna through global gene-expression analysis using RNA-Seq and untargeted metabolomics by direct-injection mass spectrometry. Our results show that a sublethal 1 mg/L 48 h exposure of D. magna to LCO nanosheets causes significant impacts on metabolic pathways versus untreated controls, while exposure to ions released over 48 h does not. Specifically, transcriptomic analysis using DAVID indicated significant enrichment (Benjamini-adjusted p ≤0.0.5) in LCO-exposed animals for changes in pathways involved in the cellular response to starvation (25 genes), mitochondrial function (70 genes), ATP-binding (70 genes), oxidative phosphorylation (53 genes), NADH dehydrogenase activity (12 genes), and protein biosynthesis (40 genes). Metabolomic analysis using MetaboAnalyst indicated significant enrichment (γ-adjusted p <0.1) for changes in amino acid metabolism (19 metabolites) and starch, sucrose, and galactose metabolism (7 metabolites). Overlap of significantly impacted pathways by RNA-Seq and metabolomics suggests amino acid breakdown and increased sugar import for energy production. Results indicate that LCO-exposed Daphnia respond to energy starvation by altering metabolic pathways, both at the gene expression and metabolite levels. These results support altered energy production as a sensitive nanotoxicity adverse outcome for LCO exposure and suggest negative impacts on energy metabolism as an important avenue for future studies of nanotoxicity, including for other biological systems and for metal oxide nanomaterials more broadly.


Subject(s)
Cobalt/pharmacology , Daphnia/drug effects , Nanostructures/chemistry , Oxides/pharmacology , Animals , Cobalt/chemistry , Daphnia/metabolism , Energy Metabolism , Oxides/chemical synthesis , Oxides/chemistry
4.
Environ Sci Technol ; 53(7): 3860-3870, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30871314

ABSTRACT

Most studies of nanomaterial environmental impacts have focused on relatively simple first-generation nanomaterials, including metals or metal oxides (e.g., Ag, ZnO) for which dissolution largely accounts for toxicity. Few studies have considered nanomaterials with more complex compositions, such as complex metal oxides, which represent an emerging class of next-generation nanomaterials used in commercial products at large scales. Importantly, many nanomaterials are not colloidally stable in aqueous environments and will aggregate and settle, yet most studies use pelagic rather than benthic-dwelling organisms. Here we show that exposure of the model benthic species Chironomus riparius to lithium cobalt oxide (Li xCo1- xO2, LCO) and lithium nickel manganese cobalt oxide (Li xNi yMn zCo1- y- zO2, NMC) at 10 and 100 mg·L-1 caused 30-60% declines in larval growth and a delay of 7-25 d in adult emergence. A correlated 41-48% decline in larval hemoglobin concentration and related gene expression changes suggest a potential adverse outcome pathway. Metal ions released from nanoparticles do not cause equivalent impacts, indicating a nanospecific effect. Nanomaterials settled within 2 days and indicate higher cumulative exposures to sediment organisms than those in the water column, making this a potentially realistic environmental exposure. Differences in toxicity between NMC and LCO indicate compositional tuning may reduce material impact.


Subject(s)
Chironomidae , Nanostructures , Water Pollutants, Chemical , Animals , Geologic Sediments , Invertebrates , Metals , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...