Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Adv Mater ; : e2401534, 2024 May 25.
Article in Dutch | MEDLINE | ID: mdl-38795019

ABSTRACT

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

3.
iScience ; 26(10): 107719, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37674984

ABSTRACT

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

4.
Phys Rev Lett ; 130(19): 196001, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243633

ABSTRACT

A recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasilong-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.

5.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36926838

ABSTRACT

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

6.
Nat Immunol ; 24(3): 516-530, 2023 03.
Article in English | MEDLINE | ID: mdl-36732424

ABSTRACT

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositols/metabolism , Signal Transduction , Type C Phospholipases/metabolism , CD8-Positive T-Lymphocytes/metabolism
7.
ACS Nano ; 17(1): 288-299, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36537371

ABSTRACT

Atomic-level defects in van der Waals (vdW) materials are essential building blocks for quantum technologies and quantum sensing applications. The layered magnetic semiconductor CrSBr is an outstanding candidate for exploring optically active defects because of a direct gap, in addition to a rich magnetic phase diagram, including a recently hypothesized defect-induced magnetic order at low temperature. Here, we show optically active defects in CrSBr that are probes of the local magnetic environment. We observe a spectrally narrow (1 meV) defect emission in CrSBr that is correlated with both the bulk magnetic order and an additional low-temperature, defect-induced magnetic order. We elucidate the origin of this magnetic order in the context of local and nonlocal exchange coupling effects. Our work establishes vdW magnets like CrSBr as an exceptional platform to optically study defects that are correlated with the magnetic lattice. We anticipate that controlled defect creation allows for tailor-made complex magnetic textures and phases with direct optical access.

8.
Phys Rev Lett ; 129(23): 237002, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36563226

ABSTRACT

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes can be excited and detected using experimental techniques such as microwave spin wave resonance spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a means for the identification of spin triplet superconductivity.

9.
Int J Food Microbiol ; 383: 109938, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36202011

ABSTRACT

Fungal spoilage limits the shelf life of fermented dairy products. To address the problem, this study explores the potential of lactic acid bacteria as antifungal adjunct cultures in dairy matrices. Strains of lactic acid bacteria (113) representing 19 species were screened for their activity against Penicillium caseifulvum, Aspergillus clavatus and Mucor racemosus in modified MRS medium, milk, and yogurt. Strains of Lactiplantibacillus plantarum, Furfurilactobacillus milii, and Lentilactobacillus parabuchneri inhibited the growth of mycelial fungi. The inhibitory effects of lactic acid bacteria against yeasts were also determined in yogurt with Candida sake, Saccharomyces bayanus, and Torulaspora delbrueckii as challenge strains. The inhibition of yeasts by lactic acid bacteria was strain-specific and unrelated to the activity towards mycelial fungi. Organic acids and hydroxy fatty acids were quantified by liquid chromatograph coupled with refractive index detector and tandem mass spectrometry, respectively. Principal component analysis indicated 10-OH 18: 1 fatty acids and acetate are the main antifungal metabolites and explained over 50 % of the antifungal activity. The correlation analysis of metabolites and mold-free shelf life of milk and yogurt confirmed the role of these compounds. The genomic study analysed genes related to the production of major antifungal metabolites and predicted the formation of 1,2-propanediol and acetate but not of hydroxy unsaturated fatty acids. The findings provide new perspectives on the selection of antifungal strains, the characterization of antifungal metabolites and the exploration of antifungal mechanisms among different species.


Subject(s)
Lactobacillales , Lactobacillales/metabolism , Antifungal Agents/pharmacology , Fermentation , Propylene Glycol/metabolism , Lactobacillaceae/metabolism , Yeasts/metabolism , Acetates/metabolism , Fatty Acids/metabolism
10.
Sci Immunol ; 7(76): eadd3263, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36240286

ABSTRACT

Type 2 immunity is associated with adipose tissue (AT) homeostasis and infection with parasitic helminths, but whether AT participates in immunity to these parasites is unknown. We found that the fat content of mesenteric AT (mAT) declined in mice during infection with a gut-restricted helminth. This was associated with the accumulation of metabolically activated, interleukin-33 (IL-33), thymic stromal lymphopoietin (TSLP), and extracellular matrix (ECM)-producing stromal cells. These cells shared transcriptional features, including the expression of Dpp4 and Pi16, with multipotent progenitor cells (MPC) that have been identified in numerous tissues and are reported to be capable of differentiating into fibroblasts and adipocytes. Concomitantly, mAT became infiltrated with resident T helper 2 (TH2) cells that responded to TSLP and IL-33 by producing stromal cell-stimulating cytokines, including transforming growth factor ß1 (TGFß1) and amphiregulin. These TH2 cells expressed genes previously associated with type 2 innate lymphoid cells (ILC2), including Nmur1, Calca, Klrg1, and Arg1, and persisted in mAT for at least 11 months after anthelmintic drug-mediated clearance of infection. We found that MPC and TH2 cells localized to ECM-rich interstitial spaces that appeared shared between mesenteric lymph node, mAT, and intestine. Stromal cell expression of epidermal growth factor receptor (EGFR), the receptor for amphiregulin, was required for immunity to infection. Our findings point to the importance of MPC and TH2 cell interactions within the interstitium in orchestrating AT remodeling and immunity to an intestinal infection.


Subject(s)
Immunity, Innate , Interleukin-33 , Adipose Tissue/metabolism , Amphiregulin , Animals , Cytokines/metabolism , Dipeptidyl Peptidase 4 , ErbB Receptors , Lymphocytes , Mice , Th2 Cells , Transforming Growth Factor beta1
11.
Environ Res ; 214(Pt 3): 113985, 2022 11.
Article in English | MEDLINE | ID: mdl-35970378

ABSTRACT

The production of commodity and specialty vegetable oils is increasing every year to fulfill the ever-increasing demand where the trading of oils occurs primarily via sea shipping. Spills of vegetable oil into the aquatic environment may result in detrimental effects on aquatic ecosystems. Environmental degradation of vegetable oil spills occurs mainly via microbial activity, chemical oxidation, wave and wind actions. However, the polymerization of oils can hinder their ability to naturally degrade. Thus, human intervention in the form of both short- and long-term remediation, is desirable to reduce the effects of vegetable oil spills on aquatic ecosystems. Studies have been conducted to determine how the type and concentration of the vegetable oil contamination influence its toxicity on various organisms. Some studies show that the effect of vegetable oil spills is found to be relatively short-lived and to a certain extent increase the survivability of certain organisms. However, the integrated effect of vegetable oil spills on aquatic organisms and their environment is still being researched. This review summarizes the existing knowledge on the reported occurrences of vegetable oil spills, their degradation, and their toxicity towards the surrounding aquatic environment which would be helpful in the knowledge transfer of remediation of vegetable oils.


Subject(s)
Petroleum Pollution , Plant Oils , Aquatic Organisms , Ecosystem , Humans , Oxidation-Reduction , Plant Oils/chemistry , Plant Oils/toxicity
12.
Microbiome ; 10(1): 77, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562794

ABSTRACT

BACKGROUND: Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers. RESULTS: AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC. CONCLUSION: This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Adult , Bacteria , Bile Acids and Salts/analysis , Biomarkers/analysis , Dietary Fiber , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Leukocyte L1 Antigen Complex/analysis , Leukocyte L1 Antigen Complex/pharmacology , Male , Obesity/microbiology
13.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508110

ABSTRACT

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Subject(s)
Cues , Killer Cells, Natural , Adipocytes/metabolism , Immunity , Interferon-gamma/metabolism
14.
Sci Immunol ; 7(70): eabl7482, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427180

ABSTRACT

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.


Subject(s)
Macrophage Activation , Macrophages , Animals , Cytokines/metabolism , Homeostasis , Inflammation/metabolism , Mice
15.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35377454

ABSTRACT

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Subject(s)
Insulin Resistance , Leptin , Adipose Tissue/metabolism , Animals , Inflammation/metabolism , Leptin/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism
16.
Food Sci Technol Int ; 28(2): 135-143, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33653147

ABSTRACT

The odour emitted from the high-tannin fab bean flour (Vicia faba var. minor), was characterized by headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). The relative odour activity value (ROAV) was used to monitor the changes in key volatile compounds in the flour during short-term storage at different temperature conditions. The key flavour compounds of freshly milled flour included hexanal, octanal, nonanal, decanal, 3-methylbutanal, phenyl acetaldehyde, (E)-2-nonenal, 1-hexanol, phenyl ethyl alcohol, 1-octen-3-ol, ß-linalool, acetic acid, octanoic acid, and 3-methylbutyric acid; these are oxidative degradation products of unsaturated fatty acids and amino acids. Despite the low lipid content of faba beans, the abundances of aldehydes arising during room temperature storage greatly contributed to the flavour of the flour due to their very low odour thresholds. Two of the key volatiles responsible for beany flavour in flour (hexanal, nonanal) increased greatly after 2 weeks of storage at room temperature or under refrigerated conditions. These volatile oxidation products may arise as a result of enzymatic activity on unsaturated fatty acids, and was seen to be arrested by freezing the flour.


Subject(s)
Vicia faba , Volatile Organic Compounds , Canada , Flour/analysis , Odorants/analysis , Solid Phase Microextraction/methods , Temperature , Vicia faba/chemistry , Volatile Organic Compounds/analysis
17.
Cell Stem Cell ; 29(1): 131-148.e10, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34706256

ABSTRACT

Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.


Subject(s)
Hematopoietic Stem Cells , Tretinoin , Cell Differentiation , Retinoic Acid 4-Hydroxylase/genetics , Signal Transduction , Tretinoin/pharmacology
18.
J Appl Microbiol ; 133(1): 120-129, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34724302

ABSTRACT

AIMS: This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS: Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS: GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.


Subject(s)
Triticum , Trypsin Inhibitors , Bread , Chromatography, Liquid , Fermentation , Glutathione , Tandem Mass Spectrometry , Trypsin , alpha-Amylases
19.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161266

ABSTRACT

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fever/immunology , Mitochondria/metabolism , Protein Biosynthesis , Animals , Antineoplastic Agents/metabolism , CD8-Positive T-Lymphocytes/ultrastructure , Cytokines/biosynthesis , Glucose/metabolism , Leukemia, Myeloid/immunology , Leukemia, Myeloid/pathology , Leukemia, Myeloid/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/ultrastructure , Models, Biological , Temperature
20.
Food Chem ; 364: 130355, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34153600

ABSTRACT

Flours were made from the sprouted seeds of the low- and high-tannin faba bean cultivars Fabelle, FB9-4, Snowbird, and Snowdrop. Headspace measurements on sprouted flours found the most favourable aroma profiles following 48 h sprouting and 24 h drying at 60 °C. Lipoxygenase activity, and the tannin, protein, and moisture contents were determined for unsprouted and sprouted faba bean flours. Lipoxygenase activity was higher in sprouted seeds before drying. Protein content increased after sprouting, whereas the tannin content decreased, especially for high-tannin varieties. Key volatile flavour compounds of faba bean flours included pentanal, hexanal, heptanal, octanal, nonanal, decanal, 1-hexanol, 1-octen-3-ol, 3-methylbutanal, phenyl acetaldehyde, 3-methylbutyric acid, d-limonene, ß-linalool, menthol, and estragole; these include oxidative degradation products of oleic, linoleic, and some amino acids. An overall flavour improvement was achieved after germination, as indicated by a decrease in bitter compounds (tannins) and beany flavours (hexanal, nonanal, 2-heptanone, and 2-pentylfuran).


Subject(s)
Fabaceae , Vicia faba , Flour , Tannins , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...