Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(4): e0006123, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37377416

ABSTRACT

Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including marine plankton. Early and recent experiments show that B1 degradation products instead of B1 can support the growth of marine bacterioplankton and phytoplankton. However, the use and occurrence of some degradation products remains uninvestigated, namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been a focus of plant oxidative stress research. We investigated the relevance of FAMP in the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-aminomethyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial cultures produce FAMP in the dark-indicating non-photodegradation of B1 by cells, and B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. Our results require an expansion of thinking about vitamin degradation in the sea, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange of the compound within the networks of plankton. IMPORTANCE Results of this collaborative study newly show that a vitamin B1 degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth deficiency. Additionally, we show FAMP is formed in and out of cells without solar irradiance-a commonly considered route of vitamin degradation in the sea and nature. Altogether, the results expand thinking about oceanic vitamin degradation, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as its generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange within networks of plankton.


Subject(s)
Plankton , Thiamine , Plankton/metabolism , Thiamine/metabolism , Oceans and Seas , Phytoplankton , Seawater/microbiology , Aquatic Organisms/metabolism , Vitamins
2.
Sci Total Environ ; 852: 158383, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36057302

ABSTRACT

In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 µm in diameter (PM2.5), 2) elucidate environmental conditions promoting their aerosolization, and 3) identify associations between CHABs and PM2.5 concentrations in the airshed of the Chowan River-Albemarle Sound, an oligohaline, eutrophic estuary in eastern North Carolina, USA. In summer 2020, during peak CHAB season, continuous PM2.5 samples and interval water samples were collected at two distinctive sites for targeted analyses of cyanobacterial community composition and MC concentration. Supporting air and water quality measurements were made in parallel to contextualize findings and permit statistical analyses of environmental factors driving changes in CHAB-derived aerosol. MC concentrations were low throughout the study, but a CHAB dominated by Dolichospermum occurred from late June to early August. Several aquatic CHAB genera recovered from Chowan River surface water were identified in PM2.5 during multiple time points, including Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Pseudanabaena. Cyanobacterial enrichment in PM2.5 was indistinctive between subspecies, but at one site during the early bloom, we observed the simultaneous enrichment of several cyanobacterial genera in PM2.5. In association with the CHAB, the median PM2.5 mass concentration increased to 8.97 µg m-3 (IQR = 5.15), significantly above the non-bloom background of 5.35 µg m-3 (IQR = 3.70) (W = 1835, p < 0.001). Results underscore the need for highly resolved temporal measurements to conclusively investigate the role that CHABs play in regional air quality and respiratory health risk.


Subject(s)
Cyanobacteria , Microcystins , Microcystins/analysis , Estuaries , Lakes/microbiology , Ecosystem , Harmful Algal Bloom , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...