Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6642): eabj5559, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37079666

ABSTRACT

Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.


Subject(s)
AMP-Activated Protein Kinases , Lysosomes , Mitochondria , Organelle Biogenesis , AMP-Activated Protein Kinases/metabolism , Lysosomes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation , Protein Processing, Post-Translational , Humans
2.
Sci Adv ; 9(11): eadd3243, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36930718

ABSTRACT

HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in Kras-mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo. HDAC3 was found to direct and enhance the transcription effects of the lung cancer lineage transcription factor NKX2-1 to mediate expression of a common set of target genes. We identified FGFR1 as a critical previously unidentified target of HDAC3. Leveraging this, we identified that an HDAC3-dependent transcriptional cassette becomes hyperactivated as Kras/LKB1-mutant cells develop resistance to the MEK inhibitor trametinib, and this can be reversed by treatment with the HDAC1/HDAC3 inhibitor entinostat. We found that the combination of entinostat plus trametinib treatment elicits therapeutic benefit in the Kras/LKB1 GEMM.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Histone Deacetylases , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Pyridines , Histone Deacetylases/genetics
3.
Nat Commun ; 13(1): 3856, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790710

ABSTRACT

AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm. Genetic deletion of the canonical upstream kinase liver kinase B1 (LKB1) results in slower AMPK activity at lysosomes but does not affect the response amplitude at lysosomes or mitochondria, in sharp contrast to the necessity of LKB1 for maximal cytoplasmic AMPK activity. We further identify a mechanism for AMPK activity in the nucleus, which results from cytoplasmic to nuclear shuttling of AMPK. Thus, ExRai AMPKAR enables illumination of the complex subcellular regulation of AMPK signaling.


Subject(s)
AMP-Activated Protein Kinases , Signal Transduction , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Phosphorylation , Signal Transduction/genetics
4.
Cell Metab ; 29(2): 285-302.e7, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30415923

ABSTRACT

AMPK, a conserved sensor of low cellular energy, can either repress or promote tumor growth depending on the context. However, no studies have examined AMPK function in autochthonous genetic mouse models of epithelial cancer. Here, we examine the role of AMPK in murine KrasG12D-mediated non-small-cell lung cancer (NSCLC), a cancer type in humans that harbors frequent inactivating mutations in the LKB1 tumor suppressor-the predominant upstream activating kinase of AMPK and 12 related kinases. Unlike LKB1 deletion, AMPK deletion in KrasG12D lung tumors did not accelerate lung tumor growth. Moreover, deletion of AMPK in KrasG12D p53f/f tumors reduced lung tumor burden. We identified a critical role for AMPK in regulating lysosomal gene expression through the Tfe3 transcription factor, which was required to support NSCLC growth. Thus, AMPK supports the growth of KrasG12D-dependent lung cancer through the induction of lysosomes, highlighting an unrecognized liability of NSCLC.


Subject(s)
AMP-Activated Protein Kinases/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Cell Line, Tumor , Loss of Function Mutation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...