Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 632008, 2021.
Article in English | MEDLINE | ID: mdl-33679660

ABSTRACT

Fusarium graminearum is the etiological agent of Fusarium head blight (FHB), a disease that produces a significant decrease in wheat crop yield and it is further aggravated by the presence of mycotoxins in the affected grains that may cause health problems to humans and animals. Plant defensins and defensin-like proteins are antimicrobial peptides (AMPs); they are small basic, cysteine-rich peptides (CRPs) ubiquitously expressed in the plant kingdom and mostly involved in host defence. They present a highly variable sequence but a conserved structure. The γ-core located in the C-terminal region of plant defensins has a conserved ß-hairpin structure and is a well-known determinant of the antimicrobial activity among disulphide-containing AMPs. Another conserved motif of plant defensins is the α-core located in the N-terminal region, not conserved among the disulphide-containing AMPs, it has not been yet extensively studied. In this report, we have cloned the putative antimicrobial protein DefSm2, expressed in flowers of the wild plant Silybum marianum. The cDNA encodes a protein with two fused basic domains of an N-terminal defensin domain (DefSm2-D) and a C-terminal Arg-rich and Lys-rich domain. To further characterize the DefSm2-D domain, we built a 3D template-based model that will serve to support the design of novel antifungal peptides. We have designed four potential antifungal peptides: two from the DefSm2-D α-core region (SmAPα1-21 and SmAPα10-21) and two from the γ-core region (SmAPγ27-44 and SmAPγ29-35). We have chemically synthesized and purified the peptides and further characterized them by electrospray ionization mass spectrometry (ESI-MS) and Circular dichroism (CD) spectroscopy. SmAPα1-21, SmAPα10-21, and SmAPγ27-44 inhibited the growth of the phytopathogen F. graminearum at low micromolar concentrations. Conidia exposure to the fungicidal concentration of the peptides caused membrane permeabilization to the fluorescent probe propidium iodide (PI), suggesting that this is one of the main contributing factors in fungal cell killing. Furthermore, conidia treated for 0.5h showed cytoplasmic disorganization as observed by transmission electron microscopy (TEM). Remarkably, the peptides derived from the α-core induced morphological changes on the conidia cell wall, which is a promising target since its distinctive biochemical and structural organization is absent in plant and mammalian cells.

2.
Arch Biochem Biophys ; 685: 108347, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32194045

ABSTRACT

The reason that determines the pathological deposition of human apolipoprotein A-I variants inducing organ failure has been under research since the early description of natural mutations in patients. To shed light into the events associated with protein aggregation, we studied the structural perturbations that may occur in the natural variant that shows a substitution of a Leucine by an Arginine in position 60 (L60R). Circular dichroism, intrinsic fluorescence measurements, and proteolysis analysis indicated that L60R was more unstable, more sensitive to cleavage and the N-terminus was more disorganized than the protein with the native sequence (Wt). A higher tendency to aggregate was also detected when L60R was incubated at physiological pH. In addition, the small structural rearrangement observed for the freshly folded variant led to the release of tumor necrosis factor-α and interleukin-1ß from a model of macrophages. However, the mutant preserved both its dimeric conformation and its lipid-binding capacity. Our results strongly suggest that the chronic disease may be a consequence of the native conformation loss which elicits the release of protein conformations that could be either cytotoxic or precursors of amyloid conformations.


Subject(s)
Amyloidogenic Proteins/metabolism , Apolipoprotein A-I/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/genetics , Amyloidosis/etiology , Amyloidosis/genetics , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Humans , Point Mutation , Protein Multimerization , Protein Stability , Protein Structure, Secondary
3.
Biochim Biophys Acta Gen Subj ; 1864(4): 129515, 2020 04.
Article in English | MEDLINE | ID: mdl-31904503

ABSTRACT

BACKGROUND: Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS: We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS: We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS: We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE: These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.


Subject(s)
Amyloidosis, Familial/genetics , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Atherosclerosis/genetics , Mutation , Amyloidosis, Familial/metabolism , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Humans , Protein Conformation
4.
Protein Expr Purif ; 165: 105483, 2020 01.
Article in English | MEDLINE | ID: mdl-31479737

ABSTRACT

The complex formed by the cyclin-dependent kinase A (CDKA) and cyclin D is responsible for the G1-S transition in the plant cell cycle. Maize (Zea mays L) CDKA; 1 and CycD6; 1 were cloned and expressed in E. coli. The present study describes the optimization of both proteins production using a statistical approach known as response surface methodology (RSM). The experimental design took into account the effects of four variables: optical density of the culture (OD600) before induction, isopropyl ß-d-1-thiogalactopyranoside (IPTG) concentration, post-induction temperature, and post-induction time. For each protein, a 24 full factorial central composite rotary design for these four independent variables (at five levels each) was employed to fit a polynomial model; which indicated that 30 experiments were required for this procedure. An optimization of CDKA; 1 and CycD6; 1 production levels in the soluble fraction was achieved. Protein conformation and stability were studied by circular dichroism and fluorescence spectroscopy. Finally, in vitro Cyc-CDK complex formation and its kinase activity were confirmed.


Subject(s)
CDC2 Protein Kinase/genetics , Cyclins/genetics , Escherichia coli/genetics , Plant Proteins/genetics , Zea mays/genetics , Base Sequence , CDC2 Protein Kinase/metabolism , Cyclins/metabolism , Gene Expression/drug effects , Isopropyl Thiogalactoside/metabolism , Models, Biological , Models, Statistical , Plant Proteins/metabolism , Protein Conformation , Solubility , Temperature , Transfection
5.
Phytochemistry ; 169: 112165, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31610323

ABSTRACT

Cyclin dependent kinase A; 1 (CDKA; 1) is essential in G1/S transition of cell cycle and its oxidation has been implicated in cell cycle arrest during plant abiotic stress. In the present study, an evaluation at the molecular level was performed to find possible sites of protein oxidative modifications. In vivo studies demonstrated that carbonylation of maize CDKA,1 is associated with a decrease in complex formation with maize cyclin D (CycD). Control and in vitro oxidized recombinant CDKA; 1 were sequenced by mass spectrometry. Proline at the PSTAIRE cyclin-binding motif was identified as the most susceptible oxidation site by comparative analysis of the resulted peptides. The specific interaction between CDKA; 1 and CycD6; 1, measured by surface plasmon resonance (SPR), demonstrated that the affinity and the kinetic of the interaction depended on the reduced-oxidized state of the CDKA; 1. CDKA; 1 protein oxidative modification would be in part responsible for affecting cell cycle progression, and thus producing plant growth inhibition under oxidative stress.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Proline/metabolism , Zea mays/enzymology , Amino Acid Sequence , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/genetics , Cyclins/chemistry , Models, Molecular , Oxidation-Reduction , Proline/chemistry , Sequence Alignment
6.
J Pept Sci ; 25(3): e3149, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30746861

ABSTRACT

Human pathogenic gram-negative bacteria, such as enteropathogenic Escherichia coli (EPEC), rely on type III secretion systems (T3SS) to translocate virulence factors directly into host cells. The coiled-coil domains present in the structural proteins of T3SS are conformed by amphipathic alpha-helical structures that play an important role in the protein-protein interaction and are essential for the assembly of the translocation complex. To investigate the inhibitory capacity of these domains on the T3SS of EPEC, we synthesized peptides between 7 and 34 amino acids based on the coiled-coil domains of proteins that make up this secretion system. This analysis was performed through in vitro hemolysis assays by assessing the reduction of T3SS-dependent red blood cell lysis in the presence of the synthesized peptides. After confirming its inhibitory capacity, we performed molecular modeling assays using combined techniques, docking-molecular dynamic simulations, and quantum-mechanic calculations of the various peptide-protein complexes, to improve the affinity of the peptides to the target proteins selected from T3SS. These techniques allowed us to demonstrate that the peptides with greater inhibitory activity, directed against the coiled-coil domain of the C-terminal region of EspA, present favorable hydrophobic and hydrogen bond molecular interactions. Particularly, the hydrogen bond component is responsible for the stabilization of the peptide-protein complex. This study demonstrates that compounds targeting T3SS from pathogenic bacteria can indeed inhibit bacterial infection by presenting a higher specificity than broad-spectrum antibiotics. In turn, these peptides could be taken as initial structures to design and synthesize new compounds that mimic their inhibitory pharmacophoric pattern.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/metabolism , Peptides/pharmacology , Type III Secretion Systems/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Circular Dichroism , Enteropathogenic Escherichia coli/growth & development , Humans , Microbial Sensitivity Tests , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Thermodynamics
7.
PLoS One ; 12(2): e0170607, 2017.
Article in English | MEDLINE | ID: mdl-28187186

ABSTRACT

A clear understanding of the structural foundations underlying protein aggregation is an elusive goal of central biomedical importance. A step toward this aim is exemplified by the ß-barrel motif represented by the intestinal fatty acid binding protein (IFABP) and two abridged all-ß sheet forms (Δ98Δ and Δ78Δ). At odds with the established notion that a perturbation of the native fold should necessarily favor a buildup of intermediate forms with an enhanced tendency to aggregate, the intrinsic stability (ΔG°H2O) of these proteins does not bear a straightforward correlation with their trifluoroethanol (TFE)-induced aggregation propensity. In view of this fact, we found it more insightful to delve into the connection between structure and stability under sub-aggregating conditions (10% TFE). In the absence of the co-solvent, the abridged variants display a common native-like region decorated with a disordered C-terminal stretch. Upon TFE addition, an increase in secondary structure content is observed, assimilating them to the parent protein. In this sense, TFE perturbs a common native like region while exerting a global compaction effect. Importantly, in all cases, fatty acid binding function is preserved. Interestingly, energetic as well as structural diversity in aqueous solution evolves into a common conformational ensemble more akin in stability. These facts reconcile apparent paradoxical findings related to stability and rates of aggregation. This scenario likely mimics the accrual of aggregation-prone species in the population, an early critical event for the development of fibrillation.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Protein Aggregates , Amino Acid Motifs , Animals , Fatty Acid-Binding Proteins/metabolism , Protein Stability , Rats , Trifluoroethanol/chemistry
8.
Biochem J ; 474(1): 179-194, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27831490

ABSTRACT

Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (∼106 M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.


Subject(s)
Histocompatibility Antigen H-2D/chemistry , Multiprotein Complexes/chemistry , NK Cell Lectin-Like Receptor Subfamily A/chemistry , Animals , Histocompatibility Antigen H-2D/genetics , Histocompatibility Antigen H-2D/immunology , Kinetics , Mice , Mice, Inbred BALB C , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/immunology , Surface Plasmon Resonance , Thermodynamics
10.
PLoS One ; 10(5): e0124946, 2015.
Article in English | MEDLINE | ID: mdl-25950566

ABSTRACT

A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.


Subject(s)
Amyloidogenic Proteins/chemistry , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Heparin/metabolism , Point Mutation , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Apolipoprotein A-I/genetics , Arginine/metabolism , Humans , Hydrogen-Ion Concentration , Models, Molecular , Phospholipids/metabolism , Proline/metabolism , Protein Aggregates , Protein Binding , Protein Stability , Sodium Dodecyl Sulfate/metabolism
11.
Biochim Biophys Acta ; 1844(9): 1599-607, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929115

ABSTRACT

Δ78Δ is a second generation functional all-ß sheet variant of IFABP (intestinal fatty acid binding protein) corresponding to the fragment 29-106 of the parent protein. This protein and its predecessor, Δ98Δ (segment 29-126 of IFABP), were initially uncovered by controlled proteolysis. Remarkably, although IFABP and Δ98Δ are monomers in solution, Δ78Δ adopts a stable dimeric structure. With the aim of identifying key structural features that modulate the aggregation of ß-proteins, we evaluate here the structure and aggregation propensity of Δ78Δ. The 2,2,2-trifluoroethanol (TFE) induced aggregation of this protein shows a primary nucleation-elongation mechanism, characterized by the stabilization of a dimeric nucleus. Its rate of production from the co-solvent induced aggregation prone state governs the kinetics of polymerization. In this context, the value of Δ78Δ lies in the fact that - being a stable dimeric species - it reduces an otherwise bimolecular reaction to a unimolecular one. Interestingly, even though Δ78Δ and IFABP display similar conformational stability, the abrogated form of IFABP shows an enhanced aggregation rate, revealing the ancillary role played on this process by the free energy of the native proteins. Δ78Δ share with IFABP and Δ98Δ a common putative aggregation-prone central peptide. Differences in the exposure/accessibility of this segment dictated by the environment around this region might underlie the observed variations in the speed of aggregation. Lessons learnt from this natural dimeric protein might shed light on the early conformational events leading to ß-conversion from barrels to amyloid aggregates.


Subject(s)
Amyloid/chemistry , Fatty Acid-Binding Proteins/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Flocculation , Humans , Kinetics , Microscopy, Electron, Transmission , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Thermodynamics , Trifluoroethanol/chemistry
12.
J Biol Chem ; 289(8): 5083-96, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24379405

ABSTRACT

Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼10(8) versus ∼10(5) M(-1)). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.


Subject(s)
Muromegalovirus/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Viral Proteins/metabolism , Animals , Anisotropy , Circular Dichroism , Fluorescence , Histocompatibility Antigens Class I/metabolism , Kinetics , Mice , Mice, Inbred C57BL , Models, Biological , NK Cell Lectin-Like Receptor Subfamily A/chemistry , Protein Binding , Protein Conformation , Surface Plasmon Resonance , Temperature , Thermodynamics , Viral Proteins/chemistry
13.
Biophys J ; 103(9): 1929-39, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23199921

ABSTRACT

Δ98Δ is a functional all-ß sheet variant of intestinal fatty acid binding protein (IFABP) that was generated by controlled proteolysis. This framework is useful to study the molecular determinants related to aggregation of ß-barrel proteins. Albeit displaying increased conformational plasticity, Δ98Δ exhibits a nativelike ß-barrel topology and is able to support a cooperative folding behavior. Here we present a comparative study of IFABP and Δ98Δ regarding their conformational perturbation and aggregation propensity triggered by trifluoroethanol. Both proteins share a common nucleation-elongation mechanism, whereby the rate-limiting step is the formation of stable dimeric nuclei followed by the association of monomers to the growing aggregates. Despite leading to a less stable structure, the extensive truncation of IFABP yields a form exhibiting a somewhat lower tendency to aggregate. This finding appears at odds with the established notion that a perturbation of the native compact fold should necessarily favor the population of aggregation-prone species. In addition to the aggregation propensity dictated by a given amino-acid sequence, our contention holds that long-range interactions might also play a major role in determining the overall aggregation propensity.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Protein Folding , Protein Multimerization , Sequence Deletion , Amino Acid Sequence , Animals , Molecular Sequence Data , Protein Stability , Protein Structure, Tertiary , Protein Subunits , Rats , Trifluoroethanol/pharmacology
14.
Protein Sci ; 18(12): 2592-602, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19844951

ABSTRACT

A lingering issue in the area of protein engineering is the optimal design of beta motifs. In this regard, the framework provided by intestinal fatty acid binding protein (IFABP) was successfully chosen to explore the consequences on structure and function of the redesign of natural motifs. A truncated form of IFABP (Delta 98 Delta) served to illustrate the nonintuitive notion that the integrity of the beta-barrel can indeed be compromised with no effect on the ability to attain a native-like fold. This is most likely the outcome of the key role played by the preservation of essential core residues. In the search for the minimal structural determinants of this fold, Delta 98 Delta offered room for further intervention. A dissection of this protein leads to a new abridged variant, Delta 78 Delta, containing 60% of the amino acids of IFABP. Spectroscopic analyses indicate that Delta 78 Delta retains substantial beta-sheet content and preserves tertiary interactions, displaying cooperative unfolding and binding activity. Most strikingly, this construct adopts a remarkably stable dimeric structure in solution. This phenomenon takes advantage of the inherent structural plasticity of this motif, likely profitting from edge-to-edge interactions between beta-sheets, whereas avoiding the most commonly occurring outcome represented by aggregation.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Amino Acid Motifs , Animals , Circular Dichroism , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Folding , Protein Multimerization , Rats , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
15.
Biochemistry ; 44(42): 13847-57, 2005 Oct 25.
Article in English | MEDLINE | ID: mdl-16229473

ABSTRACT

Intestinal fatty acid binding protein (IFABP) is a 15 kDa intracellular lipid-binding protein exhibiting a beta-barrel fold that resembles a clamshell. The beta-barrel, which encloses the ligand binding cavity, consists of two perpendicular five-stranded beta-sheets with an intervening helix-turn-helix motif between strands A and B. Delta98delta (fragment 29-126 of IFABP) was obtained either in its recombinant form or by limited proteolysis with clostripain. Despite lacking extensive stretches involved in the closure of the beta-barrel, delta98delta remains soluble and stable in solution. Spectroscopic analyses by circular dichroism, ultraviolet absorption, and intrinsic fluorescence indicate that the fragment retains substantial beta-sheet content and tertiary interactions. In particular, the environment around W82 is identical in both delta98delta and IFABP, a fact consistent with the conservation in the former of all the critical amino acid residues belonging to the hydrophobic core. In addition, the Stokes radius of delta98delta is similar to that of IFABP and 16% larger than that calculated from its molecular weight (11 kDa). The monomeric status of delta98delta was further confirmed by chemical cross-linking experiments. Although lacking 25% of the amino acids of the parent protein, in the presence of GdnHCl, delta98delta unfolds through a cooperative transition showing a midpoint at 0.90 M. Remarkably, it also preserves binding activity for fatty acids (Kd = 5.1 microM for oleic acid and Kd = 0.72 microM for trans-parinaric acid), a fact that exerts a stabilizing effect on its structure. These cumulative evidences show that delta98delta adopts a monomeric state with a compact core and a loose periphery, being so far the smallest structure of its kind preserving binding function.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Amino Acid Sequence , Base Sequence , Chromatography, Gel , Chromatography, High Pressure Liquid , Circular Dichroism , DNA Primers , Fatty Acid-Binding Proteins/chemistry , Hydrolysis , Kinetics , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...