Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 20865, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257732

ABSTRACT

Huanglongbing (HLB), caused mainly by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.


Subject(s)
Citrus sinensis/genetics , Plant Diseases/genetics , Poncirus/genetics , Transcriptome/genetics , Citrus sinensis/microbiology , Disease Susceptibility/microbiology , Down-Regulation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genotype , Liberibacter/pathogenicity , Plant Diseases/microbiology , Poncirus/microbiology , Transcription Factors/genetics
2.
Genet Mol Biol ; 43(2): e20190133, 2020.
Article in English | MEDLINE | ID: mdl-32568357

ABSTRACT

Citrus plants have been extremely affected by Huanglongbing (HLB) worldwide, causing economic losses. HLB disease causes disorders in citrus plants, leading to callose deposition in the phloem vessel sieve plates. Callose is synthesized by callose synthases, which are encoded by 12 genes (calS1- calS12)in Arabidopsis thaliana. We evaluated the expression of eight callose synthase genes from Citrus in hybrids between Citrus sunki and Poncirus trifoliata infected with HLB. The objective of this work was to identify possible tolerance loci combining the expression quantitative trait loci (eQTL) of different callose synthases and genetic Single-Nucleotide Polymorphism (SNP) maps of C. sunki and P. trifoliata. The expression data from all CscalS ranged widely among the hybrids. Furthermore, the data allowed the detection of 18 eQTL in the C. sunki map and 34 eQTL in the P. trifoliata map. In both maps, some eQTL for different CscalS were overlapped; thus, a single region could be associated with the regulation of more than one CscalS. The regions identified in this work can be interesting targets for future studies of Citrus breeding programs to manipulate callose synthesis during HLB infection.

3.
BMC Genomics ; 19(1): 516, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29969985

ABSTRACT

BACKGROUND: Phytophthora nicotianae Breda de Haan (Phytophthora parasitica Dastur) causes severe damage to citrus crops worldwide. A population of citrandarins was created from the cross between the susceptible parent Citrus sunki Hort. Ex Tan. and the resistant parent Poncirus trifoliata (L.) Raf. cv. Rubidoux, both parents and two reference rootstocks (Rangpur lime and Swingle citrumelo) were grafted in a greenhouse on Rangpur lime. Inoculations were performed at 10 cm and 15 cm above the grafting region and the resulting lesions were evaluated by measuring the lesion length 60 days after inoculation. As control, non-inoculated plants of each genotype were used. In addition, we evaluated the expression of 19 candidate genes involved in citrus defense response 48 h after pathogen infection by quantitative Real-Time PCR (qPCR). We mapped genomic regions of Quantitative Trait Loci (QTLs) and Expression Quantitative Trait Loci (eQTLs) associated with resistance to P. parasitica in the linkage groups (LGs) of the previously constructed maps of C. sunki and P. trifoliata. RESULTS: We found disease severity differences among the generated hybrids, with lesion lengths varying from 1.15 to 11.13 mm. The heritability of the character was 65%. These results indicate that there is a great possibility of success in the selection of resistant hybrids within this experiment. The analysis of gene expression profile demonstrated a great variation of responses regarding the activation of plant defense pathways, indicating that citrandarins have several defense strategies to control oomycete infection. The information of the phenotypic and gene expression data made possible to detect genomic regions associated with resistance. Three QTLs and 84 eQTLs were detected in the linkage map of P. trifoliata, while one QTL and 110 eQTLs were detected in C. sunki. CONCLUSIONS: This is the first study to use eQTLs mapping in the Phytophthora-citrus interaction. Our results from the QTLs and eQTLs mapping allow us to conclude that the resistance of some citrandarins to the infection by P. parasitica is due to a favorable combination of QTLs and eQTLs transmitted by both parents.


Subject(s)
Citrus/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Host-Parasite Interactions/genetics , Phenotype , Phytophthora/genetics , Phytophthora/pathogenicity , Plant Diseases/parasitology , Plant Leaves/genetics , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Transcriptome
4.
BMC Genomics ; 18(1): 289, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28403819

ABSTRACT

BACKGROUND: Citrus breeding programs have many limitations associated with the species biology and physiology, requiring the incorporation of new biotechnological tools to provide new breeding possibilities. Diversity Arrays Technology (DArT) markers, combined with next-generation sequencing, have wide applicability in the construction of high-resolution genetic maps and in quantitative trait locus (QTL) mapping. This study aimed to construct an integrated genetic map using full-sib progeny derived from Murcott tangor and Pera sweet orange and DArTseq™ molecular markers and to perform QTL mapping of twelve fruit quality traits. A controlled Murcott x Pera crossing was conducted at the Citrus Germplasm Repository at the Sylvio Moreira Citrus Centre of the Agronomic Institute (IAC) located in Cordeirópolis, SP, in 1997. In 2012, 278 F1 individuals out of a family of 312 confirmed hybrid individuals were analyzed for fruit traits and genotyped using the DArTseq markers. Using OneMap software to obtain the integrated genetic map, we considered only the DArT loci that showed no segregation deviation. The likelihood ratio and the genomic information from the available Citrus sinensis L. Osbeck genome were used to determine the linkage groups (LGs). RESULTS: The resulting integrated map contained 661 markers in 13 LGs, with a genomic coverage of 2,774 cM and a mean density of 0.23 markers/cM. The groups were assigned to the nine Citrus haploid chromosomes; however, some of the chromosomes were represented by two LGs due the lack of information for a single integration, as in cases where markers segregated in a 3:1 fashion. A total of 19 QTLs were identified through composite interval mapping (CIM) of the 12 analyzed fruit characteristics: fruit diameter (cm), height (cm), height/diameter ratio, weight (g), rind thickness (cm), segments per fruit, total soluble solids (TSS, %), total titratable acidity (TTA, %), juice content (%), number of seeds, TSS/TTA ratio and number of fruits per box. The genomic sequence (pseudochromosomes) of C. sinensis was compared to the genetic map, and synteny was clearly identified. Further analysis of the map regions with the highest LOD scores enabled the identification of putative genes that could be associated with the fruit quality characteristics. CONCLUSION: An integrated linkage map of Murcott tangor and Pera sweet orange using DArTseq™ molecular markers was established and it was useful to perform QTL mapping of twelve fruit quality traits. The next generation sequences data allowed the comparison between the linkage map and the genomic sequence (pseudochromosomes) of C. sinensis and the identification of genes that may be responsible for phenotypic traits in Citrus. The obtained linkage map was used to assign sequences that had not been previously assigned to a position in the reference genome.


Subject(s)
Chromosome Mapping/methods , Citrus/genetics , Genetic Markers , Quantitative Trait Loci , Chromosomes, Plant/genetics , Citrus/classification , Fruit/genetics , High-Throughput Nucleotide Sequencing/methods , Lod Score , Phenotype , Plant Breeding , Sequence Analysis, DNA/methods , Software , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...