Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765788

ABSTRACT

A simple and selective method for the determination of caffeine (CAF) and theophylline (THEO) has been developed for a glassy carbon electrode (GCE) modified with a composite including carbon dots (CDs) and chitosan (CS). To our knowledge, there are no previous studies that analyze a CDs-modified GCE for the presence of CAF and THEO. The electrochemical behavior of a GCE modified with a CDs-CS composite was studied in acidic medium by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Considering the sensor analytical parameters, the same linear concentrations range was found for CAF and THEO ranging from 1 × 10-5 to 5 × 10-3 mol L-1 with the same detection limit (LOD) of 1 × 10-6 mol L-1. The reproducibility and repeatability data were satisfactory in terms of RSD%. Moreover, the storage stability was evaluated, evidencing good results whatever the experimental conditions used. The developed sensor was applied for the simultaneous determination of CAF and THEO in tea and drug, and results were compared with those obtained with HPLC-ESI-MS in SIR mode as an independent method optimized on purpose. The electrochemical sensor presents the undoubled advantages in terms of cheapness, portability, and ease of use, since it does not require skilled personnel.


Subject(s)
Caffeine , Chitosan , Theophylline , Reproducibility of Results , Carbon , Tea
2.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175186

ABSTRACT

Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.


Subject(s)
Biological Science Disciplines , Biosensing Techniques , COVID-19 , Nanostructures , Humans , COVID-19/diagnosis , Biosensing Techniques/methods , Electrochemical Techniques
3.
Front Biosci (Landmark Ed) ; 28(1): 3, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36722277

ABSTRACT

BACKGROUND: Brewer's spent grain (BSG) is one of the main by-products of beer industry, little used because of its high moisture making it difficult to transport and store. Mainly used as animal feed and for energy production, the agro-industrial waste have recently attracted attention as source of bioactive compounds, with potential applications in many sectors as food, nutraceutical, pharmaceutical, cosmetic, food packaging. The present work focuses on BSG as potential source of valuable small-size bioactive compounds. METHODS: Laboratory-made BSG was obtained by using four base malts for mashing. After drying, BSG was eco-friendly extracted with water and the extracts analyzed by untargeted ElectroSpray Ionization (ESI)-Mass Spectrometry (MS)/Mass Spectrometry (MS) (ESI-MS/MS) infusion experiments and by targeted High Performance Liquid Chromatography-PhotoDiodeArray-ElectroSpray Ionization-Mass Spectrometry (HPLC-PDA-ESI-MS) in Selected Ion Recording (SIR) mode analysis, to investigate the metabolic profile, the phenolic profile, the individual phenolic content, and tryptophan content. Aqueous extracts of malts and wort samples were also analyzed for a comparison. Data were statistically analyzed by ANOVA test. An explorative analysis based on Principal Component Analysis (PCA) was also carried out on malts, wort and threshes, in order to study correlation among samples and between samples and variables. RESULTS: The untargeted ESI-MS/MS infusion experiments provided the mass spectral fingerprint of BSG, evidencing amino acids (γ-aminobutyric acid, proline, valine, threonine, leucine/isoleucine, lysine, histidine, phenylalanine and arginine) and organic and inorganic acids (pyruvic, lactic, phosphoric, valerianic, malonic, 2-furoic, malic, citric and gluconic acids), besides sugars. γ-Aminobutyric acid and lactic acid resulted predominant among the others. The targeted HPLC-PDA-ESI-MS in SIR mode analysis provided the phenolic profile of the polar fraction of BSG, evidenced tryptophan as the main residual metabolite in BSG (62.33-75.35 µg/g dry BSG), and catechin (1.13-4.24 µg/g dry BSG) as the representative phenolic antioxidant of not pre-treated BSG samples. The chemometric analysis of the individual compounds content in BSG, malt and wort evidenced similarities and differences among the samples. CONCLUSIONS: As main goal, the phytochemical characterization of BSG from base malts highlighted BSG as a potential source of small biomolecules, as tryptophan and catechin, besides γ-aminobutyric acid and lactic acid, opening to new perspectives of application for BSG. Strategies for their recovery are a future challenge. Moreover, ESI-MS/MS analysis was confirmed as a powerful tool for fast characterization of complex matrix. Last, results obtained by chemometric elaboration of data demonstrated the possibility to monitor a small number of molecules to ensure the quality of a final product.


Subject(s)
Catechin , Tandem Mass Spectrometry , Animals , Tryptophan , Chromatography, Liquid , Spectrometry, Mass, Electrospray Ionization
4.
Molecules ; 29(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202755

ABSTRACT

Two-dimensional (2D) nanomaterials (e.g., graphene) have attracted growing attention in the (bio)sensing area and, in particular, for biomedical applications because of their unique mechanical and physicochemical properties, such as their high thermal and electrical conductivity, biocompatibility, and large surface area. Graphene (G) and its derivatives represent the most common 2D nanomaterials applied to electrochemical (bio)sensors for healthcare applications. This review will pay particular attention to other 2D nanomaterials, such as transition metal dichalcogenides (TMDs), metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and MXenes, applied to the electrochemical biomedical (bio)sensing area, considering the literature of the last five years (2018-2022). An overview of 2D nanostructures focusing on the synthetic approach, the integration with electrodic materials, including other nanomaterials, and with different biorecognition elements such as antibodies, nucleic acids, enzymes, and aptamers, will be provided. Next, significant examples of applications in the clinical field will be reported and discussed together with the role of nanomaterials, the type of (bio)sensor, and the adopted electrochemical technique. Finally, challenges related to future developments of these nanomaterials to design portable sensing systems will be shortly discussed.


Subject(s)
Graphite , Metal-Organic Frameworks , Antibodies , Electric Conductivity , Electrochemical Techniques , Health Facilities
5.
Biosensors (Basel) ; 12(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35884306

ABSTRACT

Food allergy has been indicated as the most frequent adverse reaction to food ingredients over the past few years. Since the only way to avoid the occurrence of allergic phenomena is to eliminate allergenic foods, it is essential to have complete and accurate information on the components of foodstuff. In this framework, it is mandatory and crucial to provide fast, cost-effective, affordable, and reliable analysis methods for the screening of specific allergen content in food products. This review reports the research advancements concerning food allergen detection, involving electrochemical biosensors. It focuses on the sensing strategies evidencing different types of recognition elements such as antibodies, nucleic acids, and cells, among others, the nanomaterial role, the several electrochemical techniques involved and last, but not least, the ad hoc electrodic surface modification approaches. Moreover, a selection of the most recent electrochemical sensors for allergen detection are reported and critically analyzed in terms of the sensors' analytical performances. Finally, advantages, limitations, and potentialities for practical applications of electrochemical biosensors for allergens are discussed.


Subject(s)
Biosensing Techniques , Food Hypersensitivity , Nanostructures , Allergens/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Food Hypersensitivity/diagnosis , Humans
6.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35335772

ABSTRACT

Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.

7.
Molecules ; 26(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063344

ABSTRACT

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Food Safety/methods , Anti-Bacterial Agents/analysis , Food Chain , Humans , Pesticides/analysis , Toxins, Biological/analysis
8.
Molecules ; 25(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297366

ABSTRACT

Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanostructures/chemistry , Food Analysis/methods , Metal Nanoparticles/chemistry , Nanocomposites , Nanoparticles , Nanotubes
9.
Biochim Biophys Acta Gen Subj ; 1862(8): 1781-1789, 2018 08.
Article in English | MEDLINE | ID: mdl-29763642

ABSTRACT

BACKGROUND: Antioxidant properties have been recently suggested for caffeine that seems showing protective effects against damages caused by oxidative stress. In particular, a HO scavenging activity has been ascribed to caffeine. Even if the oxidation of caffeine has been widely studied, the antioxidant mechanism is still far to be understood. METHODS: The electrochemical behavior of caffeine, theobromine and theophylline was studied in aprotic medium by cyclic voltammetry and electrolysis in UV-vis cell; a computational analysis of the molecular structures based on the Density Functional Theory was performed; the reactivity of all substrates towards lead dioxide, superoxide and galvinoxyl radical was followed by UV-vis spectrophotometry. RESULTS: Results supported the mono-electronic oxidation of the C4C5 bond for all substrates at high oxidation potentials, the electron-transfer process leading to a radical cation or a neutral radical according to the starting methylxanthine N7-substituted (caffeine and theobromine) or N7-unsubstituted (theophylline), respectively. A different following chemical fate might be predicted for the radical cation or the neutral radical. No interaction was evidenced towards the tested reactive oxygen species. CONCLUSIONS: No reactivity via H-atom transfer was evidenced for all studied compounds, suggesting that an antiradical activity should be excluded. Some reactivity only with strong oxidants could be predicted via electron-transfer. The acclaimed HO scavenging activity should be interpreted in these terms. The study suggested that CAF might be hardly considered an antioxidant. GENERAL SIGNIFICANCE: Beyond the experimental methods used, the discussion of the present results might provide food for thought to the wide audience working on antioxidants.


Subject(s)
Antioxidants/chemistry , Caffeine/chemistry , Oxidative Stress , Reactive Oxygen Species/chemistry , Theobromine/chemistry , Theophylline/chemistry , Bronchodilator Agents/chemistry , Central Nervous System Stimulants/chemistry , Humans , Oxidation-Reduction , Solvents
10.
Langmuir ; 28(12): 5471-9, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22385276

ABSTRACT

In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.


Subject(s)
Biosensing Techniques , Caffeic Acids/analysis , Nanocomposites/chemistry , Chitosan , Gold Colloid , Green Chemistry Technology/methods , Humans , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Surface Plasmon Resonance
11.
Anal Chim Acta ; 707(1-2): 171-7, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22027135

ABSTRACT

Lead determination was carried out in the frame of the European Union project Biocop (www.biocop.org) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using "in situ", "ex situ" and "bulk" procedures was carried out. On the basis of the results obtained, we confirmed that the "in situ" procedure resulted in better analytical performances with respect to not only "ex situ" but also to "Bi(2)O(3) bulk" modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 µg L(-1) and a detection limit of 0.15 µg L(-1). We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of prepared "in situ" Bi-SPEs was also characterized by Atomic Force Microscopy (AFM). Finally, the Bi-SPEs were used to determine the concentration of lead ions in tap and commercial water samples obtaining satisfactory values of the recovery percentage (81% and 98%).


Subject(s)
Bismuth/analysis , Dielectric Spectroscopy/methods , Lead/analysis , Bismuth/chemistry , Dielectric Spectroscopy/standards , Electrodes/standards , Lead/chemistry , Microscopy, Atomic Force/methods , Water Pollutants/analysis
12.
Sensors (Basel) ; 9(4): 2437-45, 2009.
Article in English | MEDLINE | ID: mdl-22574022

ABSTRACT

Smart (Nano) materials with biosensing functions posses enormous potential in development of new generation of stable biosensors, chemical sensors, and actuators. Recently, there is a considerable interest in using TiO(2) nanostructured materials as a film-forming material since they have high surface area, optical transparency, high bio-compatibility, and relatively good conductivity. In this work, TiO(2) nanostructured films were used as nanoporous electrodes to study the electron transfer mechanisms of dopamine. epinephrine and norepinephrine, in order to develop a new generation of chemical sensors. The interesting results obtained are described herein and the analytical characterization of these neurotransmitter sensors is reported.

13.
Biosens Bioelectron ; 18(5-6): 689-98, 2003 May.
Article in English | MEDLINE | ID: mdl-12706580

ABSTRACT

Glucose oxidase, lactate oxidase, L-aminoacid oxidase and alcohol oxidase were immobilised on new films based on 2,6-dihydroxynaphthalene (2,6-DHN) copolymerised with 2-(4-aminophenyl)-ethylamine (AP-EA) onto the Pt electrodes. The electropolymerisation was performed by cyclic voltammetry. Different scan rates and scan potential ranges were investigated and selected according to the monomers used. These sensors were tested for hydrogen peroxide, ascorbic acid and acetaminophen by cyclic voltammetry and amperometry. The amperometric studies were carried out in batch as well as in a flow injection analysis (FIA) system. Analytical parameters such as reproducibility, interference rejection, response time, buffer, storage and operational time of the sensors have been studied. These films were also characterised by X-ray photoelectron spectroscopy (XPS). Different strategies for enzyme immobilisation were performed and discussed: enzyme entrapment in the film during the electropolymerisation and covalent attachment of the enzyme to the film via a carbodiimide (1-ethtl-3-(3-dimethylaminopropyl)carbodiimide, EDC) or glutaraldehyde. Different parameters were considered in order to optimise the immobilisation procedures. Results provide a guide to design high sensitive, stable and interference-free biosensors. In addition, studies were performed using these probes in an original FIA based on solenoidal valves. Sensor stability, life time and dynamic range were also optimised in these conditions.


Subject(s)
Biosensing Techniques/methods , Electrochemistry/methods , Enzymes, Immobilized/chemistry , Flow Injection Analysis/methods , Glucose Oxidase/chemistry , Glucose/analysis , Naphthols/chemistry , Phenethylamines/chemistry , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Equipment Design , Flow Injection Analysis/instrumentation , Membranes, Artificial , Oxidoreductases/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Reproducibility of Results , Sensitivity and Specificity
14.
Bioelectrochemistry ; 55(1-2): 145-8, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11786361

ABSTRACT

Electropolymerisation of nonconducting polymer, poly-(1,2-diaminobenzene) on the top of Prussian Blue (PB) modified electrode led to significant improvement of resulting hydrogen peroxide transducer selectivity and operational stability. The reported transducer retained 100% of response during 20 h under the continuous flow of 0.1 mM H(2)O(2), and thus improves the stability level in selective peroxide detection by one order of magnitude. The selectivity value of the PB-poly(1,2-DAB) based H(2)O(2) sensor in relation to ascorbate is approximately 600. No signals to acetaminophen and urate were investigated. PB-poly(1,2-diaminobenzene) modified electrode allows the detection of H(2)O(2) in the flow-injection mode down to 10(-7) M with the sensitivity 0.3 A M(-1) cm(-2), which is only two times lower compared to the uncovered PB based transducer.


Subject(s)
Electrodes , Ferrocyanides/chemistry , Hydrogen Peroxide/chemistry , Phenylenediamines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...