Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 17(5): 908-920, 2018 05.
Article in English | MEDLINE | ID: mdl-29483206

ABSTRACT

The cyclin dependent kinase (CDK)-retinoblastoma (RB)-E2F pathway plays a critical role in the control of cell cycle in estrogen receptor-positive (ER+) breast cancer. Small-molecule inhibitors of CDK4/6 have shown promise in this tumor type in combination with hormonal therapies, reflecting the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR inhibitors have also shown potential in clinical trials in this disease setting. Recent data have suggested cooperation between the PI3K/mTOR pathway and CDK4/6 inhibition in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay between these pathways have not been fully elucidated. Here we show that profound and durable inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F-mediated transcription. We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a decrease in cyclin D1 protein, RB phosphorylation, and E2F-mediated transcription. Combination of an mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F-dependent transcription, which translates into more durable growth arrest and a delay in the onset of resistance. Combined inhibition of mTORC1/2, CDK4/6, and ER delivers even more profound and durable regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor-resistant cell lines reactivate the CDK-RB-E2F pathway, but remain sensitive to mTORC1/2 inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have relapsed on CDK4/6 therapy. Mol Cancer Ther; 17(5); 908-20. ©2018 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , E2F Transcription Factors/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzamides , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , E2F Transcription Factors/metabolism , Female , Humans , MCF-7 Cells , Mice, SCID , Morpholines/administration & dosage , Piperazines/administration & dosage , Pyridines/administration & dosage , Pyrimidines , Receptors, Estrogen/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
J Med Chem ; 59(10): 4859-66, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27078757

ABSTRACT

Optimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptor, IGF Type 1/metabolism , Structure-Activity Relationship
3.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27020862

ABSTRACT

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cinnamates/pharmacology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Indoles/pharmacology , Mutation/genetics , Administration, Oral , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/administration & dosage , Drug Evaluation, Preclinical , Estrogen Receptor Modulators/administration & dosage , Estrogen Receptor alpha/chemistry , Female , Humans , Indoles/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Protein Conformation , Rats , Tumor Cells, Cultured , Uterus/metabolism , Uterus/pathology , Xenograft Model Antitumor Assays
4.
Pharmacol Res Perspect ; 3(5): e00175, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26516587

ABSTRACT

Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development.

5.
J Med Chem ; 58(20): 8128-40, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26407012

ABSTRACT

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Subject(s)
Antineoplastic Agents/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/pharmacology , Indoles/chemistry , Indoles/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Down-Regulation/drug effects , Drug Design , Female , Humans , Injections, Intramuscular , X-Ray Diffraction
6.
Altern Lab Anim ; 37(2): 173-80, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19453212

ABSTRACT

This review describes the changing use of tumour models in rodents (predominantly mice) as employed over the last four decades in anti-cancer drug discovery, and the refinements in the experimental methods used. Such models are required to examine the complexities of cancer biology (e.g. tumour angiogenesis, invasion and metastasis, host immunity factors) and the impact of potential therapies (e.g. drug pharmacokinetics, pharmacodynamics and therapeutic index), and they have produced efficacious human therapeutics. Animal welfare considerations have driven refinements to animal models of cancer over time, with the most dramatic refinements being facilitated by the move away from inherently cytotoxic therapeutic approaches toward targeted inhibitors of disease-related processes. Whereas, four decades ago, the impact of disease burden was used as an endpoint in the absence of defined mechanistic parameters, acute pharmacodynamic measures are now increasingly used to minimise the adverse effects of disease and experimental procedures in a given animal. The changes in the UK guidelines on the use of rodents in preclinical cancer testing are also used as an illustration of the progressive refinement in tumour models and drug testing.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms, Experimental/drug therapy , Rodentia , Animals , Antineoplastic Agents/pharmacology , Disease Models, Animal , Humans , National Cancer Institute (U.S.)/standards , Practice Guidelines as Topic , Research/standards , Research/trends , Transplantation, Heterologous , United Kingdom , United States
7.
Clin Cancer Res ; 14(10): 3124-31, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18483380

ABSTRACT

PURPOSE: Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a key therapeutic approach in oncology given the role of VEGF in angiogenesis and vascular permeability in solid tumors. Clinical trials examining VEGF signaling inhibitors commonly report hypertension. We examined the effect of cediranib, a highly potent VEGF signaling inhibitor, on the blood pressure of rats and the ability of standard antihypertensive agents to modulate the consequences of VEGF signaling inhibition. EXPERIMENTAL DESIGN: The ability of cediranib to induce hypertensive changes and the effect of giving antihypertensive therapy were investigated in conscious, unrestrained telemetered rats. Two antihypertensive agents were studied: captopril, an angiotensin-converting enzyme inhibitor, and nifedipine, a dihydropyridine calcium channel blocker. The antitumor activity of cediranib, alone and in combination with nifedipine, was also evaluated in a LoVo human colorectal tumor xenograft model in nude rats. All treatments were given orally. RESULTS: Administration of 0.1 to 1.5 mg/kg/d of cediranib for 4 consecutive days induced a relatively mild hypertensive effect, elevating diastolic blood pressure by 10 to 14 mmHg. Dosing 3 mg/kg/d cediranib for 4 days induced a marked hypertension of 35 to 50 mmHg. Captopril (30 mg/kg, qd) was effective at lowering a 10 mmHg increase in blood pressure but not a 35 to 50 mmHg increase. However, the latter was rapidly reversed by administration of nifedipine (10 mg/kg, bd). Coadministration of nifedipine did not negatively affect the antitumor activity of cediranib (1.5 mg/kg/d). CONCLUSIONS: Hypertension is a direct consequence of inhibiting VEGF signaling but can be controlled with appropriately selected, standard antihypertensive medication.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Quinazolines/pharmacology , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Animals , Antihypertensive Agents/pharmacology , Antineoplastic Agents/pharmacology , Captopril/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Humans , Mice , Nifedipine/pharmacology , Rats , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/drug effects , Xenograft Model Antitumor Assays
8.
J Natl Cancer Inst ; 99(22): 1724-8, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-18000220

ABSTRACT

Antivascular agents that act by destabilizing microtubules, such as ZD6126 (N-acetylcolchinol-O-phosphate), are associated with adverse cardiovascular effects, including transient hypertension, cardiac ischemia, myocardial infarction, and increases in circulating levels of markers of cardiac damage (e.g., troponins). We investigated mechanisms underlying these effects of ZD6126 in rats by continuously monitoring their heart rate and blood pressure and by assessing heart histopathology and plasma troponin T levels. ZD6126 induced acute transient hemodynamic changes (hypertension and delayed tachycardia), which were associated with statistically significant increases in circulating troponin T levels (median level 3 hours after treatment with vehicle or 12.5 mg/kg ZD6126: <9 pg/mL and 563 pg/mL, respectively; P <.001 [two-sided Wilcoxon rank sum test]) and in the incidence of left ventricular myocardial fiber necrosis (incidence 24 hours after treatment with vehicle or 12.5 mg/kg ZD6126: 0/10 rats and 9/10 rats, respectively; P <.001 [two-sided Wilcoxon rank sum test]). Pretreatment of rats with atenolol and nifedipine ameliorated the acute hemodynamic changes and prevented ZD6126-induced increases in both troponin T and myocardial necrosis but did not prevent ZD6126-induced tumor necrosis in an Hras5 tumor xenograft model in nude rats. Our findings suggest that ZD6126-induced acute hemodynamic changes are a prerequisite for cardiac damage in rats.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Antihypertensive Agents/pharmacology , Antineoplastic Agents/toxicity , Atenolol/pharmacology , Hemodynamics/drug effects , Hypertension/prevention & control , Nifedipine/pharmacology , Organophosphorus Compounds/toxicity , Tachycardia/prevention & control , Adrenergic beta-Antagonists/pharmacology , Animals , Anti-Arrhythmia Agents/therapeutic use , Antihypertensive Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Atenolol/therapeutic use , Biomarkers/blood , Calcium Channel Blockers/pharmacology , Disease Models, Animal , Drug Administration Schedule , Female , Heart/drug effects , Hypertension/chemically induced , Myocardium/pathology , Neoplasms/drug therapy , Nifedipine/therapeutic use , Organophosphorus Compounds/administration & dosage , Random Allocation , Rats , Tachycardia/chemically induced , Transplantation, Heterologous , Troponin T/blood , Vasodilator Agents/pharmacology
9.
Cancer Res ; 65(10): 4389-400, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15899831

ABSTRACT

Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a promising therapeutic approach that aims to stabilize the progression of solid malignancies by abrogating tumor-induced angiogenesis. This may be accomplished by inhibiting the kinase activity of VEGF receptor-2 (KDR), which has a key role in mediating VEGF-induced responses. The novel indole-ether quinazoline AZD2171 is a highly potent (IC50 < 1 nmol/L) ATP-competitive inhibitor of recombinant KDR tyrosine kinase in vitro. Concordant with this activity, in human umbilical vein endothelial cells, AZD2171 inhibited VEGF-stimulated proliferation and KDR phosphorylation with IC50 values of 0.4 and 0.5 nmol/L, respectively. In a fibroblast/endothelial cell coculture model of vessel sprouting, AZD2171 also reduced vessel area, length, and branching at subnanomolar concentrations. Once-daily oral administration of AZD2171 ablated experimental (VEGF-induced) angiogenesis in vivo and inhibited endochondral ossification in bone or corpora luteal development in ovary; physiologic processes that are highly dependent upon neovascularization. The growth of established human tumor xenografts (colon, lung, prostate, breast, and ovary) in athymic mice was inhibited dose-dependently by AZD2171, with chronic administration of 1.5 mg per kg per day producing statistically significant inhibition in all models. A histologic analysis of Calu-6 lung tumors treated with AZD2171 revealed a reduction in microvessel density within 52 hours that became progressively greater with the duration of treatment. These changes are indicative of vascular regression within tumors. Collectively, the data obtained with AZD2171 are consistent with potent inhibition of VEGF signaling, angiogenesis, neovascular survival, and tumor growth. AZD2171 is being developed clinically as a once-daily oral therapy for the treatment of cancer.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Bone Development/drug effects , Cell Proliferation/drug effects , Corpus Luteum/drug effects , Corpus Luteum/growth & development , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Extracellular Matrix Proteins , Female , Humans , Mice , Myosin Heavy Chains , Neoplasms/blood supply , Neoplasms/pathology , Nonmuscle Myosin Type IIB , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Proteins/antagonists & inhibitors , Quinazolines/pharmacokinetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors , Xenograft Model Antitumor Assays
10.
Cancer Res ; 62(16): 4645-55, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12183421

ABSTRACT

ZD6474 [N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine]is a potent, p.o. active, low molecular weight inhibitor of kinase insert domain-containing receptor [KDR/vascular endothelial growth factor receptor (VEGFR) 2] tyrosine kinase activity (IC(50) = 40 nM). This compound has some additional activity versus the tyrosine kinase activity of fms-like tyrosine kinase 4 (VEGFR3;IC(50) = 110 nM) and epidermal growth factor receptor (EGFR/HER1; IC(50) = 500 nM) and yet demonstrates selectivity against a range of other tyrosine and serine-threonine kinases. The activity of ZD6474 versus KDR tyrosine kinase translates into potent inhibition of vascular endothelial growth factor-A (VEGF)-stimulated endothelial cell (human umbilical vein endothelial cell) proliferation in vitro (IC(50) = 60 nM). Selective inhibition of VEGF signaling has been demonstrated in vivo in a growth factor-induced hypotension model in anesthetized rat: administration of ZD6474 (2.5 mg/kg, i.v.) reversed a hypotensive change induced by VEGF (by 63%) but did not significantly affect that induced by basic fibroblast growth factor. Once-daily oral administration of ZD6474 to growing rats for 14 days produced a dose-dependent increase in the femoro-tibial epiphyseal growth plate zone of hypertrophy, which is consistent with inhibition of VEGF signaling and angiogenesis in vivo. Administration of 50 mg/kg/day ZD6474 (once-daily, p.o.) to athymic mice with intradermally implanted A549 tumor cells also inhibited tumor-induced neovascularization significantly (63% inhibition after 5 days; P < 0.001). Oral administration of ZD6474 to athymic mice bearing established (0.15-0.47 cm(3)), histologically distinct (lung, prostate, breast, ovarian, colon, or vulval) human tumor xenografts or after implantation of aggressive syngeneic rodent tumors (lung, melanoma) in immunocompetent mice, produced a dose-dependent inhibition of tumor growth in all cases. Statistically significant antitumor activity was evident in each model with at least 25 mg/kg ZD6474 once daily (P < 0.05, one-tailed t test). Histological analysis of Calu-6 tumors treated with 50 mg/kg/day ZD6474 for 24 days showed a significant reduction (>70%) in CD31 (endothelial cell) staining in nonnecrotic regions. ZD6474 also restrained growth of much larger (0.9 cm(3) volume) Calu-6 lung tumor xenografts and induced profound regression in established PC-3 prostate tumors of 1.4 cm(3) volume. ZD6474 is currently in Phase I clinical development as a once-daily oral therapy in patients with advanced cancer.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Endothelial Growth Factors/antagonists & inhibitors , Lymphokines/antagonists & inhibitors , Piperidines/pharmacology , Quinazolines/pharmacology , Administration, Oral , Animals , Cell Division/drug effects , Endothelial Growth Factors/physiology , Enzyme Inhibitors/pharmacology , Female , Humans , Lymphokines/physiology , Male , Mice , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/drug therapy , Rats , Rats, Wistar , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor , Signal Transduction/drug effects , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors , Xenograft Model Antitumor Assays
11.
J Med Chem ; 45(6): 1300-12, 2002 Mar 14.
Article in English | MEDLINE | ID: mdl-11881999

ABSTRACT

We have previously shown that 4-anilinoquinazolines can be potent inhibitors of vascular endothelial growth factor (VEGF) receptor (Flt-1 and KDR) tyrosine kinase activity. A novel subseries of 4-anilinoquinazolines that possess basic side chains at the C-7 position of the quinazoline nucleus have been synthesized. This subseries contains potent, nanomolar inhibitors of KDR (median IC(50) 0.02 microM, range 0.001-0.04 microM), which are comparatively less potent vs Flt-1 tyrosine kinase (median IC(50) 0.55 microM, range 0.02-1.6 microM). The compounds also retain some inhibitory activity against the tyrosine kinase associated to the endothelial growth factor receptor (EGFR) (median IC(50) 0.2 microM, range 0.075-0.8 microM) but demonstrate selectivity vs that associated to the FGF receptor 1 (median IC(50) 2.5 microM, range 0.9-19 microM). This selectivity profile is also evident in a growth factor-stimulated human endothelial cell (HUVEC) proliferation assay (i.e., inhibition of VEGF > EGF > FGF), with inhibition of VEGF-induced proliferation being achieved at nanomolar concentrations (median IC(50) 0.06 microM). Further examination of compound 2 (ZD6474) in recombinant enzyme assays revealed excellent selectivity for the inhibition of KDR tyrosine kinase (IC(50) 0.04 microM) vs the kinase activity of erbB2, MEK, CDK-2, Tie-2, IGFR-1R, PDK, PDGFRbeta, and AKT (IC(50) range: 1.1 to >100 microM). Anilinoquinazolines possessing basic C-7 side chains exhibited markedly improved aqueous solubility over previously described anilinoquinazolines possessing neutral C-7 side chains (up to 500-fold improvement at pH 7.4). In addition, aqueous solubility of the neutral fraction present at pH 7.4 of the basic subseries of anilinoquinazoline proved to be higher than that of the neutral analogue 1 (ZD4190). Oral administration of representative compounds to mice (50 mg/kg) produced plasma levels between 0.2 and 3 microM at 24 h after dosing. Our development candidate 2 demonstrated a very attractive in vitro profile combined with excellent solubility (330 microM at pH 7.4) and good oral bioavailability in rat and dog (> 80 and > 50%, respectively). This compound demonstrated highly significant, dose-dependent, antitumor activity in athymic mice. Once daily oral administration of 100 mg/kg of compound 2 for 21 days inhibited the growth of established Calu-6 lung carcinoma xenografts by 79% (P < 0.001, Mann Whitney rank sum test), and substantial inhibition (36%, P < 0.02) was evident with 12.5 mg/kg/day.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Antineoplastic Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Proto-Oncogene Proteins/antagonists & inhibitors , Quinazolines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , Biological Availability , Cell Division/drug effects , Cells, Cultured , Dogs , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Mice, Nude , Piperidines/administration & dosage , Piperidines/chemical synthesis , Piperidines/pharmacology , Quinazolines/administration & dosage , Quinazolines/pharmacology , Rats , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-1
SELECTION OF CITATIONS
SEARCH DETAIL
...