Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Expr Patterns ; 6(4): 340-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16448863

ABSTRACT

The gene WSTF is deleted in the autosomal dominant hereditary disorder Williams-Beuren syndrome. This disorder is caused by a 1.3 megabase deletion in human chromosome 7, encompassing at least 17 genes. The WSTF protein contains a bromodomain, found predominantly in chromatin-associated proteins. Reported association of WSTF with chromatin remodeling factors and functional data support a role for WSTF during chromatin remodeling. Here, we report the cloning and developmental expression pattern of Xenopus laevis WSTF. Xenopus laevis WSTF is a protein with a predicted amino acid sequence of 1441 amino acids. Three discrete domains can be identified in the Xenopus laevis WSTF protein, a PHD finger, a DDT domain and a bromodomain. Alignment of Xenopus WSTF with the corresponding orthologues from Homo sapiens, Gallus gallus, Mus musculus and Danio rerio demonstrates an evolutionary conservation of WSTF amino acid sequence and domain organization. In situ hybridization reveals a dynamic expression profile during embryonic development. WSTF is expressed differentially in neural tissue, especially during neurulae stages in the eye, in neural crest cells and the brain.


Subject(s)
Cloning, Molecular/methods , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Xenopus Proteins/genetics , Xenopus laevis/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Embryo, Nonmammalian , Humans , In Situ Hybridization , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...