Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Affect Disord ; 351: 833-842, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38341153

ABSTRACT

BACKGROUND: Stress-induced illnesses, like major depression, are among the leading causes of disability across the world. Consequently, there is a dire need for the validation of translationally-suited animal models incorporating social stress to uncover the etiology of depression. Prairie voles (Microtus ochrogaster) are more translationally relevant than many other rodent models as they display monogamous social and bi-parental behaviors. Therefore, we evaluated whether a novel social defeat stress (SDS) model in male prairie voles induces depression-relevant behavioral outcomes. METHODS: Adult sexually-naïve male prairie voles experienced SDS bouts from a conspecific pair-bonded male aggressor, 10 min per day for 10 consecutive days. Non-stressed controls (same-sex siblings) were housed in similar conditions but never experienced physical stress. Twenty-four h later, voles were evaluated in social interaction, sucrose preference, and Morris water maze tests - behavioral endpoints validated to assess social withdrawal, anhedonia-related behavior, and spatial memory performance, respectively. RESULTS: SDS-exposed voles displayed lower sociability and body weight, decreased preference for a sucrose solution, and impairment of spatial memory retrieval. Importantly, no differences in general locomotor activity were observed as a function of SDS exposure. LIMITATIONS: This study does not include female voles in the experimental design. CONCLUSIONS: We found that repeated SDS exposure, in male prairie voles, results in a depression-relevant phenotype resembling an anhedonia-like outcome (per reductions in sucrose preference) along with social withdrawal and spatial memory impairment - highlighting that the prairie vole is a valuable model with potential to study the neurobiology of social stress-induced depression-related outcomes.


Subject(s)
Social Behavior , Social Defeat , Animals , Female , Male , Depression , Anhedonia , Grassland , Arvicolinae , Sucrose
2.
Psychoneuroendocrinology ; 150: 106025, 2023 04.
Article in English | MEDLINE | ID: mdl-36709631

ABSTRACT

Birth is a critical period for the developing brain, a time when surging hormone levels help prepare the fetal brain for the tremendous physiological changes it must accomplish upon entry into the 'extrauterine world'. A number of obstetrical conditions warrant manipulations of these hormones at the time of birth, but we know little of their possible consequences on the developing brain. One of the most notable birth signaling hormones is oxytocin, which is administered to roughly 50% of laboring women in the United States prior to / during delivery. Previously, we found evidence for behavioral, epigenetic, and neuroendocrine consequences in adult prairie vole offspring following maternal oxytocin treatment immediately prior to birth. Here, we examined the neurodevelopmental consequences in adult prairie vole offspring following maternal oxytocin treatment prior to birth. Control prairie voles and those exposed to 0.25 mg/kg oxytocin were scanned as adults using anatomical and functional MRI, with neuroanatomy and brain function analyzed as voxel-based morphometry and resting state functional connectivity, respectively. Overall, anatomical differences brought on by oxytocin treatment, while widespread, were generally small, while differences in functional connectivity, particularly among oxytocin-exposed males, were larger. Analyses of functional connectivity based in graph theory revealed that oxytocin-exposed males in particular showed markedly increased connectivity throughout the brain and across several parameters, including closeness and degree. These results are interpreted in the context of the organizational effects of oxytocin exposure in early life and these findings add to a growing literature on how the perinatal brain is sensitive to hormonal manipulations at birth.


Subject(s)
Grassland , Oxytocin , Male , Pregnancy , Infant, Newborn , Humans , Female , Animals , Oxytocin/pharmacology , Neuroanatomy , Parturition , Arvicolinae/physiology , Social Behavior , Receptors, Oxytocin
3.
Addict Biol ; 27(3): e13169, 2022 05.
Article in English | MEDLINE | ID: mdl-35470553

ABSTRACT

BACKGROUND AND AIMS: Social norms and legality surrounding the use of medical and recreational cannabis are changing rapidly. The prevalence of cannabis use in adolescence is increasing. The aim of this study was to assess any sex-based neurobiological effects of chronically inhaled, vaporised cannabis on adolescent female and male mice. METHODS: Female and male mice were exposed daily to vaporised cannabis (10.3% Δ-9-tetrahydrocannabinol [THC] and 0.05% cannabidiol [CBD]) or placebo from postnatal day 23 to day 51. Following cessation of treatment, mice were examined for changes in brain structure and function using noninvasive multimodal magnetic resonance imaging (MRI). Data from voxel-based morphometry, diffusion weighted imaging and rest state functional connectivity were registered to and analysed with a 3D mouse atlas with 139 brain areas. Following imaging, mice were tested for their preference for a novel object. RESULTS: The effects were sexually dimorphic with females showing a unique distribution and inverse correlation between measures of fractional anisotropy and apparent diffusion coefficient localised to the forebrain and hindbrain. In contrast males displayed significant increased functional coupling with the thalamus, hypothalamus and brainstem reticular activating system as compared with controls. Cannabis males also presented with altered hippocampal coupling and deficits in cognitive function. CONCLUSION: Chronic exposure to inhaled vaporised cannabis had significant effects on brain structure and function in early adulthood corroborating much of the literature. Females presented with changes in grey matter microarchitecture, while males showed altered functional connectivity in hippocampal circuitry and deficits in object recognition.


Subject(s)
Cannabis , Analgesics , Animals , Brain , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Female , Magnetic Resonance Imaging , Male , Mice
4.
Article in English | MEDLINE | ID: mdl-33239258

ABSTRACT

BACKGROUND: We used the highly prosocial prairie vole to test the hypothesis that higher-order brain structure-microarchitecture and functional connectivity (FC)-would differ between males from populations with distinctly different levels of prosocial behavior. Specifically, we studied males from Illinois (IL), which display high levels of prosocial behavior, and first generation males from Kansas dams and IL males (KI), which display the lowest level of prosocial behavior and higher aggression. Behavioral differences between these males are associated with overexpression of estrogen receptor alpha in the medial amygdala and bed nucleus of the stria terminalis and neuropeptide expression in the paraventricular nucleus. METHODS: We compared apparent diffusion coefficient, fractional anisotropy, and blood oxygen level-dependent resting-state FC between males. RESULTS: IL males displayed higher apparent diffusion coefficient in regions associated with prosocial behavior, including the bed nucleus of the stria terminalis, paraventricular nucleus, and anterior thalamic nuclei, while KI males showed higher apparent diffusion coefficient in the brainstem. KI males showed significantly higher fractional anisotropy than IL males in 26 brain regions, with the majority being in the brainstem reticular activating system. IL males showed more blood oxygen level-dependent resting-state FC between the bed nucleus of the stria terminalis, paraventricular nucleus, and medial amygdala along with other brain regions, including the hippocampus and areas associated with social and reward networks. CONCLUSIONS: Our results suggest that gray matter microarchitecture and FC may play a role the expression of prosocial behavior and that differences in other brain regions, especially the brainstem, could be involved. The differences between males suggests that this system represents a potentially valuable model system for studying emotional differences and vulnerability to stress and addiction.


Subject(s)
Arvicolinae , Grassland , Animals , Arvicolinae/metabolism , Brain/metabolism , Cerebral Cortex , Diffusion Magnetic Resonance Imaging , Humans , Male
5.
Article in English | MEDLINE | ID: mdl-34839018

ABSTRACT

BACKGROUND: The goal of this study was to elucidate the fundamental connectivity-resting-state connectivity-within and between nodes in the olfactory and prosocial (PS) cores, which permits the expression of social monogamy in males; and how differential connectivity accounts for differential expression of prosociality and aggression. METHODS: Using resting-state functional magnetic resonance imaging, we integrated graph theory analysis to compare functional connectivity between two culturally/behaviorally distinct male prairie voles (Microtusochrogaster). RESULTS: Illinois males display significantly higher levels of prosocial behavior and lower levels of aggression than KI (Kansas dam and Illinois sire) males, which are associated with differences in underlying neural mechanisms and brain microarchitecture. Shared connectivity 1) between the anterior hypothalamic area and the paraventricular nucleus and 2) between the medial preoptic area and bed nucleus of the stria terminalis and the nucleus accumbens core suggests essential relationships required for male prosocial behavior. In contrast, Illinois males displayed higher levels of global connectivity and PS intracore connectivity, a greater role for the bed nucleus of the stria terminalis and anterior hypothalamic area, which were degree connectivity hubs, and greater PS and olfactory intercore connectivity. CONCLUSIONS: These findings suggest that behavioral differences are associated with PS core degree of connectivity and postsignal induction. This transgenerational system may serve as powerful mental health and drug abuse translational model in future studies.


Subject(s)
Sexual Behavior, Animal , Social Behavior , Animals , Arvicolinae/metabolism , Brain/metabolism , Grassland , Humans , Male
6.
Am J Transl Res ; 13(7): 8480-8495, 2021.
Article in English | MEDLINE | ID: mdl-34377346

ABSTRACT

This study was designed to assess the effects of daily psychostimulant exposure during juvenility and peri-adolescence on brain morphology and functional connectivity using multimodal magnetic resonance imaging. We hypothesized that long-term exposure to methylphenidate would enhance connectivity with the prefrontal cortex. Male rats were given daily injections of either methylphenidate (n=10), dextroamphetamine (n=10) or saline vehicle (n=10) from postnatal day 21 to 42. They were imaged between postnatal day 43 and 48. Voxel-based morphometry, diffusion weighted imaging, and resting state functional connectivity were used to quantify brain structure and function. Images from each modality were registered and analyzed, using a 3D MRI rat atlas providing site-specific data over 171 different brain areas. Following imaging, rats were tested for cognitive function using novel object preference. Long-lasting psychostimulant treatment was associated with only a few significant changes in brain volume and measures of anisotropy compared to vehicle. Resting state functional connectivity imaging revealed decreased coupling between the prefrontal cortex, basal ganglia and sensory motor cortices. There were no significant differences between experimental groups for cognitive behavior. In this exploratory study, we showed that chronic psychostimulant treatment throughout juvenility and preadolescence has a minimal effect on brain volume and gray matter microarchitecture, but significantly uncouples the connectivity in the cerebral/basal ganglia circuitry.

7.
Proc Biol Sci ; 288(1956): 20210318, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34344176

ABSTRACT

Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.


Subject(s)
Estrogen Receptor alpha , Social Behavior , Amygdala/metabolism , Animals , Arvicolinae/genetics , Arvicolinae/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Grassland , Male
8.
J Transl Med ; 19(1): 220, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34030718

ABSTRACT

BACKGROUND: The phytocannabinoid cannabidiol (CBD) exhibits anxiolytic activity and has been promoted as a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. METHODS: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged 1 h later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements. RESULTS: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. CONCLUSION: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress.


Subject(s)
Cannabidiol , Animals , Brain , Cannabidiol/pharmacology , Fear , Magnetic Resonance Imaging , Mice , Wakefulness
9.
Physiol Behav ; 203: 128-134, 2019 05 01.
Article in English | MEDLINE | ID: mdl-28917948

ABSTRACT

Psychostimulant abuse is associated with a variety of impairments in social functioning, including an increased frequency of depression and aggression and deficits in social cognition. Psychostimulants reduce social investigation in rats and mice; however, it is less clear how other forms of social behavior (e.g., prosocial behavior) are affected. Females are also generally more sensitive to the effects of psychostimulants on locomotion and stereotyped behavior, which suggests that females might also display greater disruption of prosocial behavior. In order to test the hypothesis that psychostimulants reduce prosocial behavior and that females are more vulnerable, we treated adult male and female prairie voles with methamphetamine for three days (0, 0.2 or 2.0mg/kg, i.p.) and examined effects on locomotion and alloparental behavior. The lower methamphetamine dose increased activity in the open field in males and reduced locomotion in females. Methamphetamine-treated males took longer to enter the pup chamber, but both sexes displayed reduced pup contact following treatment with the lower methamphetamine dose. The methamphetamine-induced reduction in prosocial behavior was not associated with changes in pup-directed aggression in males or females. In order to investigate potential mechanisms underlying these changes in behavior, we measured adrenal weights as a proxy for activation of the hypothalamic-pituitary-adrenal (HPA) axis. The higher methamphetamine dose increased adrenal weights. Collectively, these data demonstrate that methamphetamine administration reduces alloparental behavior in both sexes and that females are more sensitive to some of the effects of this drug (e.g., locomotion/stereotyped behavior and possibly stimulation of the HPA axis).


Subject(s)
Aggression/drug effects , Central Nervous System Stimulants/pharmacology , Maternal Behavior/drug effects , Methamphetamine/pharmacology , Paternal Behavior/drug effects , Adrenal Glands/drug effects , Animals , Arvicolinae , Female , Male , Motor Activity/drug effects , Organ Size/drug effects , Sex Factors
10.
Behav Brain Res ; 360: 94-102, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30521929

ABSTRACT

This study tested the hypotheses that maternal and paternal effects differentially influence expression of their offspring's adult behavior and underlying neural mechanisms. We predicted that maternal influences would be greater than paternal influences on male offspring. We tested these hypotheses by cross-breeding two phenotypically-, behaviorally- and neuroanatomically-distinct populations of prairie voles (Microtus ochrogaster) from Illinois, which are highly prosocial, and Kansas, which are significantly less prosocial. Females from each population were crossed with males from the other population. F1 crosses were tested as adults to determine the effect of parentage on the expression of prosocial behavior and aggression, using a same-sex dyadic encounter and a heterosexual partner preference test, and for the expression of oxytocin (OT) and arginine vasopressin (AVP) in the paraventricular nucleus of the hypothalamus (PVN). As predicted, all significant differences in males, behavioral, OT and AVP immunoreactivity, were associated exclusively with maternal influences. There was a significant effect of treatment in the OT immunoreactivity of females. The effect of treatment in females' OT was associated with an interaction of population and sex, while same-sex social interactions differences were associated with population. Finally, in females, paternity influenced heterosexual bonds, with females with Illinois sires forming a partner preference. The results indicate that maternal influences dominate in male offspring, suggesting a parent-of-origin effect, while paternal effects are limited to selected prosocial behavioral expression in daughters.


Subject(s)
Arginine Vasopressin/metabolism , Maternal Inheritance/physiology , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paternal Inheritance/physiology , Social Behavior , Analysis of Variance , Animals , Arvicolinae , Female , Male , Pair Bond , Sex Characteristics
11.
BMC Res Notes ; 11(1): 852, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30509318

ABSTRACT

OBJECTIVE: In this study, empathy is quantified using a novel social test. Empathy and prosocial behavior are linked to the expression of oxytocin in humans and rodent models. Specifically, prosocial behavior in prairie voles (Microtus ochrogaster) has been linked to the expression of oxytocin in the paraventricular nucleus of the hypothalamus. The animal's behavior was considered empathic if it spends significantly more time attempting to remove a loos fitting restraint (tether) from the stimulus animal than time in contact with a, simultaneously presented, non-social object similar to the tether. The behavioral data was cross-referenced with the number of neurons expressing oxytocin and arginine vasopressin, as well as the density of dopaminergic neurons (identified by the expression of tyrosine hydroxylase), in the paraventricular nucleus of the hypothalamus. These proteins influence empathic behavior in humans, non-human primates, rats, mice, and prairie voles. RESULTS: The consistency between neuroanatomical mechanisms linked to empathy, and the durations of time spent engaging in empathic contact, support the prediction that the empathic contact in this test is a distinct prosocial behavior, lacking prior behavioral training or the naturally occurring ethological relevance of other prosocial behaviors, and is a measure of empathy.


Subject(s)
Arginine Vasopressin/genetics , Arvicolinae/psychology , Behavior, Animal/physiology , Cooperative Behavior , Empathy/physiology , Oxytocin/genetics , Animals , Arginine Vasopressin/metabolism , Arvicolinae/physiology , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Female , Gene Expression , Humans , Hypothalamus/cytology , Hypothalamus/metabolism , Male , Models, Animal , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
12.
Behav Brain Res ; 351: 42-48, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29859197

ABSTRACT

This study tested the hypothesis that site-specific estrogen receptor alpha (ERα) expression is a critical factor in the expression of male prosocial behavior and aggression. Previous studies have shown that in the socially monogamous prairie vole (Microtus ochrogaster) low levels of ERα expression, in the medial amygdala (MeA), play an essential role in the expression of high levels of male prosocial behavior and that increasing ERα expression reduced male prosocial behavior. We used an shRNA adeno-associated viral vector to knock down/inhibit ERα in the MeA of the polygynous male meadow vole (M. pennsylvanicus), which displays significantly higher levels of ERα in the MeA than its monogamous relative. Control males were transfected with a luciferase expressing AAV vector. After treatment males participated in three social behavior tests, a same-sex dyadic encounter, an opposite-sex social preference test and an alloparental test. We predicted that decreasing MeA ERα would increase male meadow vole's prosocial behavior and reduce aggression. The results generally supported the hypothesis. Specifically, MeA knockdown males displayed lower levels of defensive aggression during dyadic encounters and increased levels of overall side-x-side physical contact with females during the social preference test, eliminating the partner preference observed in controls. There was no effect on pup interactions, with both treatments expressing low levels of alloparental behavior. Behaviors affected were similar to those in male prairie voles with increased ERα in the BST rather than the MeA, suggesting that relative changes of expression within these nuclei may play a critical role in regulating prosocial behavior.


Subject(s)
Amygdala/metabolism , Behavior, Animal/physiology , Estrogen Receptor alpha/metabolism , Social Behavior , Animals , Arvicolinae , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Gene Knockdown Techniques , Male , Paternal Behavior/physiology
13.
Gen Comp Endocrinol ; 238: 39-46, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27102938

ABSTRACT

During development, microglia, the resident immune cells of the brain, play an important role in synaptic organization. Microglial colonization of the developing brain is sexually dimorphic in some regions, including nuclei critical for the coordination of social behavior, suggesting steroid hormones have an influencing role, particularly estrogen. By extension, microglial colonization may be vulnerable to endocrine disruption. Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to Bisphenol A (BPA), a ubiquitous EDC, has been associated with altered sociosexual and mood-related behaviors in various animal models and children. Through a comparison of the promiscuous Wistar rat (Rattus norvegicus) and the socially monogamous prairie vole (Microtus ochrogaster), we are the first to observe that developmental exposure to the synthetic estrogen ethinyl estradiol (EE) or BPA alters the sex-specific colonization of the hippocampus and amygdala by microglia.


Subject(s)
Brain/cytology , Endocrine Disruptors/toxicity , Microglia/metabolism , Sex Characteristics , Social Behavior , Amygdala/cytology , Amygdala/drug effects , Animals , Animals, Newborn , Arvicolinae , Benzhydryl Compounds/toxicity , Brain/drug effects , Brain/growth & development , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Female , Male , Microglia/drug effects , Phenols/toxicity , Rats, Wistar , Somatosensory Cortex/cytology , Somatosensory Cortex/drug effects
14.
PLoS One ; 11(3): e0150373, 2016.
Article in English | MEDLINE | ID: mdl-26959827

ABSTRACT

In microtine and dwarf hamsters low levels of estrogen receptor alpha (ERα) in the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) play a critical role in the expression of social monogamy in males, which is characterized by high levels of affiliation and low levels of aggression. In contrast, monogamous Peromyscus males display high levels of aggression and affiliative behavior with high levels of testosterone and aromatase activity. Suggesting the hypothesis that in Peromyscus ERα expression will be positively correlated with high levels of male prosocial behavior and aggression. ERα expression was compared within the social neural network, including the posterior medial BST, MeA posterodorsal, medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and arcuate nucleus in two monogamous species, P. californicus and P. polionotus, and two polygynous species, P. leucopus and P. maniculatus. The results supported the prediction, with male P. polionotus and P. californicus expressing higher levels of ERα in the BST than their polygynous counter parts, and ERα expression was sexually dimorphic in the polygynous species, with females expressing significantly more than males in the BST in both polygynous species and in the MeA in P. leucopus. Peromyscus ERα expression also differed from rats, mice and microtines as in neither the MPOA nor the VMH was ERα sexually dimorphic. The results supported the hypothesis that higher levels of ERα are associated with monogamy in Peromyscus and that differential expression of ERα occurs in the same regions of the brains regardless of whether high or low expression is associated with social monogamy. Also discussed are possible mechanisms regulating this differential relationship.


Subject(s)
Estrogen Receptor alpha/metabolism , Peromyscus/metabolism , Animals , Female , Male , Mice , Rats , Sexual Behavior, Animal/physiology , Social Behavior
15.
Psychoneuroendocrinology ; 68: 20-8, 2016 06.
Article in English | MEDLINE | ID: mdl-26939085

ABSTRACT

Chronic stressors are generally considered to disrupt reproduction and inhibit mating. Here we test the hypothesis that a chronic stressor, specifically social isolation, can facilitate adaptive changes that enhance/accelerate reproductive effort. In general, monogamous species display high levels of prosociality, delayed sexual maturation, and greater parental investment in fewer, higher quality offspring compared with closely related polygynous species. We predicted that chronic social isolation would promote behavioral and neurochemical patterns in prairie voles associated with polygyny. Male and female prairie voles were isolated for four weeks and changes in mating behavior, alloparental care, estrogen receptor (ER) α expression and tyrosine hydroxylase (TH) expression in brain regions regulating sociosexual behavior were examined. In males, isolation accelerated copulation, increased ERα in the medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpm), and reduced TH expression in the MEApd and BSTpm, but had no effect on alloparental behavior. In females, isolation resulted in more rapid estrus induction and reduced TH expression in the MEApd and BSTpm, but had no effect on estradiol sensitivity or ERα expression. The results support the hypothesis that ERα expression in the MEApd and BSTpm is a critical determinant of male copulatory behavior and/or mating system. The lack of change in alloparental behavior suggests that changes in prosocial behavior are selective and regulated by different mechanisms. The results also suggest that TH in the MEApd and BSTpm may play a critical role in determining mating behavior in both sexes.


Subject(s)
Arvicolinae/physiology , Reproduction/physiology , Sexual Behavior, Animal/physiology , Social Isolation , Amygdala/metabolism , Animals , Arvicolinae/metabolism , Arvicolinae/psychology , Corticomedial Nuclear Complex/metabolism , Estrogen Receptor alpha/metabolism , Female , Male , Septal Nuclei/metabolism , Social Behavior , Stress, Psychological/metabolism , Tyrosine 3-Monooxygenase/metabolism
16.
Dev Psychobiol ; 58(2): 223-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26419697

ABSTRACT

Here, for the first time, the expression of estrogen receptor beta (ERß) is characterized in the brains of the highly prosocial prairie vole (Microtus ochrogaster). ERß immunoreactivity was compared in weanlings (postnatal Day 21) and adult males and females. The results indicate several major findings. First, unlike ERα, ERß expression is not sexually dimorphic. Second, the adult pattern of ERß-IR is established at the time of weaning, as there were no age-dependent effects on distribution. Finally, ERß does not appear to be as widely distributed in voles compared with rats and mice. High levels of ERß-IR were observed in several regions/nuclei within the medial pre-optic area, ventrolateral pre-optic nuclei, and in the hypothalamus, especially in the paraventricular and supraoptic nuclei. The visualization of ERß in prairie voles is important as the socially monogamous prairie vole functions as a human relevant model system for studying the expression of social behavior and social deficit disorders. Future studies will now be able to determine the effect of treatments on the expression and/or development of ERß in this highly social species.


Subject(s)
Brain/metabolism , Estrogen Receptor beta/metabolism , Age Factors , Animals , Arvicolinae , Behavior, Animal , Brain/growth & development , Female , Immunohistochemistry , Male , Sex Factors , Social Behavior
17.
Horm Behav ; 75: 11-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26222494

ABSTRACT

Sex- and species-specific patterns of estrogen receptor (ER)-α expression are established early in development, which may contribute to sexual differentiation of behavior and determine male social organization. The current study investigated the effects of ERα and ERß activation during the second postnatal week on subsequent alloparental behavior and ERα expression in juvenile prairie voles. Male and female pups were treated daily with 17ß-estradiol (E2, ERα/ERß agonist), PPT (selective ERα agonist), DPN (selective ERß agonist), or the oil vehicle on postnatal days (PD) 8-14. Alloparental behavior and ERα expression were examined at PD21. PPT treatment inhibited prosocial motivation in males and increased pup-directed aggression in both sexes. E2 and DPN had no apparent effect on behavior in either sex. PPT-treated males had increased ERα expression in the medial preoptic area (MPN), medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpr). DPN treatment also increased ERα expression in males, but only in the BSTpr. Female ERα expression was unaffected by treatment. These results support the hypothesis that ERα activation in early life is associated with less prosocial patterns of central ERα expression and alloparental behavior in males. The lack of an effect of E2 on behavior suggests that ERß may antagonize the effects of ERα on alloparental behavior. The results in DPN-treated males suggest that ERα in the MEApd, and not the BSTpr, may be a primary determinant of alloparental behavior in males.


Subject(s)
Cooperative Behavior , Estradiol/physiology , Nesting Behavior/physiology , Paternal Behavior/psychology , Social Behavior , Animals , Animals, Newborn , Arvicolinae , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor beta/agonists , Female , Ginsenosides/pharmacology , Male , Nesting Behavior/drug effects , Nitriles/pharmacology , Paternal Behavior/drug effects , Preoptic Area/drug effects , Preoptic Area/metabolism , Sapogenins/pharmacology
18.
Endocrinology ; 155(10): 3867-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25051448

ABSTRACT

Impacts on brain and behavior have been reported in laboratory rodents after developmental exposure to bisphenol A (BPA), raising concerns about possible human effects. Epidemiological data suggest links between prenatal BPA exposure and altered affective behaviors in children, but potential mechanisms are unclear. Disruption of mesolimbic oxytocin (OT)/vasopressin (AVP) pathways have been proposed, but supporting evidence is minimal. To address these data gaps, we employed a novel animal model for neuroendocrine toxicology: the prairie vole (Microtus ochrogaster), which are more prosocial than lab rats or mice. Male and female prairie vole pups were orally exposed to 5-µg/kg body weight (bw)/d, 50-µg/kg bw/d, or 50-mg/kg bw/d BPA or vehicle over postnatal days 8-14. Subjects were tested as juveniles in open field and novel social tests and for partner preference as adults. Brains were then collected and assessed for immunoreactive (ir) tyrosine hydroxylase (TH) (a dopamine marker) neurons in the principal bed nucleus of the stria terminalis (pBNST) and TH-ir, OT-ir, and AVP-ir neurons in the paraventricular nucleus of the hypothalamus (PVN). Female open field activity indicated hyperactivity at the lowest dose and anxiety at the highest dose. Effects on social interactions were also observed, and partner preference formation was mildly inhibited at all dose levels. BPA masculinized principal bed nucleus of the stria terminalis TH-ir neuron numbers in females. Additionally, 50-mg/kg bw BPA-exposed females had more AVP-ir neurons in the anterior PVN and fewer OT-ir neurons in the posterior PVN. At the 2 lowest doses, BPA eliminated sex differences in PVN TH-ir neuron numbers and reversed this sex difference at the highest dose. Minimal behavioral effects were observed in BPA-exposed males. These data support the hypothesis that BPA alters affective behaviors, potentially via disruption of OT/AVP pathways.


Subject(s)
Arvicolinae , Behavior, Animal/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Environmental Exposure , Environmental Pollutants/toxicity , Models, Animal , Neurosecretory Systems/drug effects , Phenols/toxicity , Social Behavior , Affect/drug effects , Animals , Arvicolinae/physiology , Arvicolinae/psychology , Defense Mechanisms , Female , Male , Motor Activity/drug effects , Toxicity Tests
19.
Dev Psychobiol ; 54(1): 92-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21594870

ABSTRACT

Oxytocin (OT) has an organizational effect within the central nervous system and can have long-lasting effects on the expression of social behavior. OT has recently been implicated in modulating the release of serotonin through activation of receptors in the raphe nuclei. Here we test the hypothesis that OT can have an organizational effect on the serotonergic system. Male prairie voles received an intraperitoneal injection on postnatal day 1 with 3.0 or .3 µg OT, an OT antagonist, or a saline control. Brains were collected on day 21 and immunostained for serotonin. Serotonin axons were quantified in the anterior hypothalamus, cortical amygdala, medial amygdala, paraventricular nucleus of the hypothalamus, and ventromedial hypothalamus. Males treated with 3.0 µg OT displayed significantly higher serotonin axon length densities in the anterior hypothalamus, cortical amygdala, and the ventromedial hypothalamus than control males. These results support the hypothesis that OT has an organizational effect on the serotonin system during the neonatal period, and that these effects are site-specific.


Subject(s)
Brain/drug effects , Neurons/drug effects , Oxytocin/pharmacology , Serotonin/metabolism , Animals , Arvicolinae , Brain/metabolism , Male , Neurons/metabolism , Oxytocin/antagonists & inhibitors , Oxytocin/metabolism
20.
PLoS One ; 5(1): e8931, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20111713

ABSTRACT

Estrogen receptor alpha (ERalpha) typically masculinizes male behavior, while low levels of ERalpha in the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BST) are associated with high levels of male prosocial behavior. In the males of the highly social prairie vole (Microtus ochrogaster), increasing ERalpha in the MeA inhibited the expression of spontaneous alloparental behavior and produced a preference for novel females. To test for the effects of increased ERalpha in the BST, a viral vector was used to enhance ERalpha expression in the BST of adult male prairie voles. Following treatment, adult males were tested for alloparental behavior with 1-3-day-old pups, and for heterosexual social preference and affiliation. Treatment did not affect alloparental behavior as 73% of ERalpha-BST males and 62.5% of control males were alloparental. Increasing ERalpha in the BST affected heterosexual affiliation, with ERalpha-BST males spending significantly less total time in side-by-side contact with females relative to time spent with control males. ERalpha-BST males did not show a preference for either the familiar or novel female. These findings differed significantly from those reported in ERalpha-MeA enhanced males, where ERalpha inhibited alloparental behavior and produced a preference for a novel female. The findings from this study suggest two things: first, that increased ERalpha in the BST decreases social affiliation and second, that altering ERalpha in different regions of the social neural circuit differentially impacts the expression of social behavior.


Subject(s)
Behavior, Animal , Estrogen Receptor alpha/physiology , Septal Nuclei/physiology , Social Behavior , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...