Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1044, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441776

ABSTRACT

Iran lies at the southernmost range limit of brown bears globally. Therefore, understanding the habitat associations and patterns of population connectivity for brown bears in Iran is relevant for the species' conservation. We applied species distribution modeling to predict habitat suitability and connectivity modeling to identify population core areas and corridors. Our results showed that forest density, topographical roughness, NDVI and human footprint were the most influential variables in predicting brown bear distribution. The most crucial core areas and corridor networks for brown bear are concentrated in the Alborz and Zagros Mountains. These two core areas were predicted to be fragmented into a total of fifteen isolated patches if dispersal of brown bear across the landscape is limited to 50,000 cost units, and aggregates into two isolated habitat patches if the species is capable of dispersing 400,000 cost units. We found low overlap between corridors, and core habitats with protected areas, suggesting that the existing protected area network may not be adequate for the conservation of brown bear in Iran. Our results suggest that effective conservation of brown bears in Iran requires protection of both core habitats and the corridors between them, especially outside Iran's network of protected areas.


Subject(s)
Conservation of Natural Resources/methods , Ursidae , Animals , Demography , Ecosystem , Female , Iran , Male , Models, Statistical
2.
Mol Ecol Resour ; 17(6): 1308-1317, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28449317

ABSTRACT

A major aim of landscape genetics is to understand how landscapes resist gene flow and thereby influence population genetic structure. An empirical understanding of this process provides a wealth of information that can be used to guide conservation and management of species in fragmented landscapes and also to predict how landscape change may affect population viability. Statistical approaches to infer the true model among competing alternatives are based on the strength of the relationship between pairwise genetic distances and landscape distances among sampled individuals in a population. A variety of methods have been devised to quantify individual genetic distances, but no study has yet compared their relative performance when used for model selection in landscape genetics. In this study, we used population genetic simulations to assess the accuracy of 16 individual-based genetic distance metrics under varying sample sizes and degree of population genetic structure. We found most metrics performed well when sample size and genetic structure was high. However, it was much more challenging to infer the true model when sample size and genetic structure was low. Under these conditions, we found genetic distance metrics based on principal components analysis were the most accurate (although several other metrics performed similarly), but only when they were derived from multiple principal components axes (the optimal number varied depending on the degree of population genetic structure). Our results provide guidance for which genetic distance metrics maximize model selection accuracy and thereby better inform conservation and management decisions based upon landscape genetic analysis.


Subject(s)
Computational Biology/methods , Genetic Variation , Genetics, Population/methods , Biostatistics/methods , Computer Simulation , Models, Genetic
3.
Mol Ecol Resour ; 12(2): 363-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21951716

ABSTRACT

Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially-explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal panmictic populations in an allopatric setting in their predictions of population structure and frequency of fixation of adaptive alleles. We explore initial applications of a spatially-explicit, individual-based evolutionary landscape genetics program that incorporates all factors--mutation, gene flow, genetic drift and selection--that affect the frequency of an allele in a population. We incorporate natural selection by imposing differential survival rates defined by local relative fitness values on a landscape. Selection coefficients thus can vary not only for genotypes, but also in space as functions of local environmental variability. This simulator enables coupling of gene flow (governed by resistance surfaces), with natural selection (governed by selection surfaces). We validate the individual-based simulations under Wright-Fisher assumptions. We show that under isolation-by-distance processes, there are deviations in the rate of change and equilibrium values of allele frequency. The program provides a valuable tool (cdpop v1.0; http://cel.dbs.umt.edu/software/CDPOP/) for the study of evolutionary landscape genetics that allows explicit evaluation of the interactions between gene flow and selection in complex landscapes.


Subject(s)
Computer Simulation , Genetics, Population , Selection, Genetic , Gene Flow , Models, Genetic , Software
4.
Mol Ecol Resour ; 11(5): 922-34, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21679313

ABSTRACT

Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans.


Subject(s)
Demography , Genetic Variation , Genetics, Population , Ruminants/genetics , Software , Animals , Computer Simulation , Conservation of Natural Resources/methods , Washington
5.
Mol Ecol ; 20(6): 1092-107, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21261764

ABSTRACT

We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.


Subject(s)
Ecology/methods , Ursidae/genetics , Altitude , Animals , Gene Flow/genetics , Genetic Loci/genetics , Genetic Variation/genetics , Genotype , Linkage Disequilibrium/genetics
6.
Mol Ecol ; 19(19): 4179-91, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20819159

ABSTRACT

Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individual-based simulations to examine the ability of an individual-based statistic [Mantel's r using the proportion of shared alleles' statistic (Dps)] and population-based statistic (FST ) to detect barriers. We simulated a range of movement strategies including nearest neighbour dispersal, long-distance dispersal and panmixia. The lag time for the signal of a new barrier to become established is short using Mantel's r (1-15 generations). FST required approximately 200 generations to reach 50% of its equilibrium maximum, although G'ST performed much like Mantel's r. In strong contrast, FST and Mantel's r perform similarly following the removal of a barrier formerly dividing a population. Also, given neighbour mating and very short-distance dispersal strategies, historical discontinuities from more than 100 generations ago might still be detectable with either method. This suggests that historical events and landscapes could have long-term effects that confound inferences about the impacts of current landscape features on gene flow for species with very little long-distance dispersal. Nonetheless, populations of organisms with relatively large dispersal distances will lose the signal of a former barrier within less than 15 generations, suggesting that individual-based landscape genetic approaches can improve our ability to measure effects of existing landscape features on genetic structure and connectivity.


Subject(s)
Ecosystem , Genetics, Population/methods , Models, Genetic , Computer Simulation , Data Interpretation, Statistical , Geography
7.
Mol Ecol ; 19(17): 3603-19, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20723066

ABSTRACT

Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene flow. The preponderance of landscape resistance models generated to date, however, is subjectively parameterized based on expert opinion or proxy measures of gene flow. While the relatively few studies that use genetic data are more rigorous, frameworks they employ frequently yield models only weakly related to the observed patterns of genetic isolation. Here, we describe a new framework that uses expert opinion as a starting point. By systematically varying each model parameter, we sought to either validate the assumptions of expert opinion, or identify a peak of support for a new model more highly related to genetic isolation. This approach also accounts for interactions between variables, allows for nonlinear responses and excludes variables that reduce model performance. We demonstrate its utility on a population of mountain goats inhabiting a fragmented landscape in the Cascade Range, Washington.


Subject(s)
Gene Flow , Genetics, Population , Goats/genetics , Models, Biological , Animals , Ecology/methods , Ecosystem , Genotype , Geography , Principal Component Analysis , Washington
8.
Mol Ecol Resour ; 10(1): 156-61, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21565001

ABSTRACT

Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (cdpop). The model implements individual-based population modelling with Mendelian inheritance and k-allele mutation on a resistant landscape. The model simulates changes in population and genotypes through time as functions of individual based movement, reproduction, mortality and dispersal on a continuous cost surface. This model will be a valuable tool for the study of landscape genetics by increasing our understanding about the effects of life history, vagility and differential models of landscape resistance on the genetic structure of populations in complex landscapes.

9.
Mol Ecol Resour ; 10(5): 854-62, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21565096

ABSTRACT

Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic structure. We used classical Wright-Fisher models and spatially explicit, individual-based, landscape genetic models to simulate gene flow via dispersal and mating in a series of landscapes representing two patches of habitat separated by a barrier. We developed a mathematical formula that predicts the relationship between barrier strength (i.e., permeability) and the migration rate (m) across the barrier, thereby linking spatially explicit landscape genetics to classical population genetics theory. We then assessed the reliability of the function by obtaining population genetics parameters (m, F(ST) ) using simulations for both spatially explicit and Wright-Fisher simulation models for a range of gene flow rates. Next, we show that relaxing some of the assumptions of the Wright-Fisher model can substantially change population substructure (i.e., F(ST) ). For example, isolation by distance among individuals on each side of a barrier maintains an F(ST) of ∼0.20 regardless of migration rate across the barrier, whereas panmixia on each side of the barrier results in an F(ST) that changes with m as predicted by classical population genetics theory. We suggest that individual-based, spatially explicit modelling provides a general framework to investigate how interactions between movement and landscape resistance drive population genetic patterns and connectivity across complex landscapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...