Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 1(10): 2277-87, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20355863

ABSTRACT

This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs.

2.
Langmuir ; 23(15): 8129-34, 2007 Jul 17.
Article in English | MEDLINE | ID: mdl-17585787

ABSTRACT

A living cell has a crowded environment with a dense distribution of molecules that requires structured organization for its efficient functioning. One component of this structure, the actin cytoskeleton, is essential for providing mechanical support and facilitating many response activities, including the contraction of muscle cells and chemotaxis. Whereas many investigations have provided insight into the mechanical response from either an in vivo or in vitro perspective, a significant gap exists in determining how the living cell response and the polymer physics response are bridged. The understanding of these systems involves studying their components, including the individual cytoskeletal elements versus the higher-order organism organization in a living cell. Here, we leverage this organization in nature by using a chemistry-based approach to mimic the cytoskeleton in an artificial environment composed of spherically distributed lipid bilayers. This construct bears similarities to the cell membrane. To create a structurally regulated environment, we encapsulate G-actin into giant unilamellar vesicles and then polymerize actin filaments within individual liposomes. We visualize these vesicles with epifluorescence microscopy and confocal microscopy. Atomic force microscopy is then used to probe the mechanical properties of these artificial cells. This polymer cytoskeletal network appears to connect with the lipid bilayer and span the internal space within the liposomes in a manner similar to what is observed in living cells. This work will have implications in a variety of fields, including chemistry, polymer physics, structural biology, and engineering mechanics.


Subject(s)
Actin Cytoskeleton/chemistry , Biomimetic Materials/chemistry , Cytoskeleton/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Microscopy, Atomic Force , Surface Properties
3.
Langmuir ; 23(1): 241-9, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-17190510

ABSTRACT

Well-defined copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzophenone methacrylate (BPMA) with different compositions were synthesized via atom transfer radical polymerization. The molecular weights of these copolymers were Mn approximately 30 000 g/mol, while the BPMA content varied from 2.5 to 10 mol %. The copolymers with a low content of BPMA (2.5 and 5 mol %) exhibited a sharp thermal transition at 33-36 degrees C in aqueous solution. A hydrogel was immobilized and patterned on a silicon wafer via UV treatment of the spin-coated polymer layer using a photomask technique. The thermoresponsive behavior of the patterned polymer gel was quantitatively investigated by variable temperature in situ contact mode atomic force microscopy, which revealed the presence of two lower critical solution temperature regions. One region was between 25 and 30 degrees C, corresponding to the topmost layer of the hydrogel film, and the other region, around 40 degrees C, corresponded to the bulk of the hydrogel. Concurrent lateral force microscopy measurements revealed that, just above the transition temperature, the bulk region exhibited enhanced friction.


Subject(s)
Hydrogels/chemical synthesis , Methacrylates/chemical synthesis , Nylons/chemical synthesis , Silicon Dioxide/chemistry , Free Radicals/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Microscopy, Atomic Force , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nylons/chemistry
4.
Proc Natl Acad Sci U S A ; 103(13): 4813-8, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16551751

ABSTRACT

One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...