Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 942433, 2022.
Article in English | MEDLINE | ID: mdl-35968149

ABSTRACT

More knowledge is needed about the molecular/cellular control of paclitaxel (PTX) production in Taxus spp. cell cultures. In this study, the yield of this anticancer agent in Taxus baccata cell suspensions was improved 11-fold after elicitation with coronatine (COR) compared to the untreated cells, and 18-fold when co-supplemented with methyl-ß-cyclodextrins (ß-CDs). In the dual treatment, the release of taxanes from the producer cells was greatly enhanced, with 81.6% of the total taxane content being found in the medium at the end of the experiment. The experimental conditions that caused the highest PTX production also induced its maximum excretion, and increased the expression of taxane biosynthetic genes, especially the flux-limiting BAPT and DBTNBT. The application of COR, which activates PTX biosynthesis, together with ß - CDs, which form inclusion complexes with PTX and related taxanes, is evidently an efficient strategy for enhancing PTX production and release to the culture medium. Due to the recently described role of lipid droplets (LDs) in the trafficking and accumulation of hydrophobic taxanes in Taxus spp. cell cultures, the structure, number and taxane storage capacity of these organelles was also studied. In elicited cultures, the number of LDs increased and they mainly accumulated taxanes with a side chain, especially PTX. Thus, PTX constituted up to 50-70% of the total taxanes found in LDs throughout the experiment in the COR + ß - CD-treated cultures. These results confirm that LDs can store taxanes and distribute them inside and outside cells.

2.
Molecules ; 27(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014492

ABSTRACT

One of the aims of plant in vitro culture is to produce secondary plant metabolites using plant cells and organ cultures, such as cell suspensions, adventitious, and hairy roots (among others). In cases where the biosynthesis of a compound in the plant is restricted to a specific organ, unorganized systems, such as plant cell cultures, are sometimes unsuitable for biosynthesis. Then, its production is based on the establishment of organ cultures such as roots or aerial shoots. To increase the production in these biotechnological systems, elicitors have been used for years as a useful tool since they activate secondary biosynthetic pathways that control the flow of carbon to obtain different plant compounds. One important biotechnological system for the production of plant secondary metabolites or phytochemicals is root culture. Plant roots have a very active metabolism and can biosynthesize a large number of secondary compounds in an exclusive way. Some of these compounds, such as tropane alkaloids, ajmalicine, ginsenosides, etc., can also be biosynthesized in undifferentiated systems, such as cell cultures. In some cases, cell differentiation and organ formation is necessary to produce the bioactive compounds. This review analyses the biotic elicitors most frequently used in adventitious and hairy root cultures from 2010 to 2022, focusing on the plant species, the target secondary metabolite, the elicitor and its concentration, and the yield/productivity of the target compounds obtained. With this overview, it may be easier to work with elicitors in in vitro root cultures and help understand why some are more effective than others.


Subject(s)
Ginsenosides , Plant Roots , Biotechnology , Cell Culture Techniques , Ginsenosides/pharmacology , Plant Cells/metabolism , Plant Roots/metabolism , Plants/metabolism
3.
Front Plant Sci ; 13: 899444, 2022.
Article in English | MEDLINE | ID: mdl-35874001

ABSTRACT

Environmental conditions are key factors in the modulation of the epigenetic mechanisms regulating gene expression in plants. Specifically, the maintenance of cell cultures in optimal in vitro conditions alters methylation patterns and, consequently, their genetic transcription and metabolism. Paclitaxel production in Taxus x media cell cultures is reduced during its maintenance in in vitro conditions, compromising the biotechnological production of this valuable anticancer agent. To understand how DNA methylation influences taxane production, the promoters of three genes (GGPPS, TXS, and DBTNBT) involved in taxane biosynthesis have been studied, comparing the methylation patterns between a new line and one of ~14 years old. Our work revealed that while the central promoter of the GGPPS gene is protected from cytosine methylation accumulation, TXS and DBTNBT promoters accumulate methylation at different levels. The DBTNBT promoter of the old line is the most affected, showing a 200 bp regulatory region where all the cytosines were methylated. This evidence the existence of specific epigenetic regulatory mechanisms affecting the last steps of the pathway, such as the DBTNBT promoter. Interestingly, the GGPPS promoter, a regulatory sequence of a non-specific taxane biosynthetic gene, was not affected by this mechanism. In addition, the relationship between the detected methylation points and the predicted transcription factor binding sites (TFBS) showed that the action of TFs would be compromised in the old line, giving a further explanation for the production reduction in in vitro cell cultures. This knowledge could help in designing novel strategies to enhance the biotechnological production of taxanes over time.

4.
J Photochem Photobiol B ; 234: 112532, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35908357

ABSTRACT

Taxus baccata L. cell culture is a promising commercial method for the production of taxanes with anti-cancer activities. In the present study, a T. baccata cell suspension culture was exposed to white light and 2-aminoindan-2-phosphonic acid (AIP), a phenylalanine ammonia lyase (PAL) inhibitor, and the effects of this treatment on cell growth, PAL activity, total phenol content (TPC), total flavonoid content (TFC), taxane production and the expression of some key taxane biosynthetic genes (DXS, GGPPS, T13OH, BAPT, DBTNBT) as well as the PAL were studied. Light reduced cell growth, whereas AIP slightly improved it. Light increased PAL activity up to 2.7-fold relative to darkness. The highest TPC (24.89 mg GAE/g DW) and TFC (66.94 mg RUE/g DW) were observed in cultures treated with light and AIP. Light treatment also resulted in the maximum content of total taxanes (154.78 µg/g DW), increasing extracellular paclitaxel and cephalomannin (3.3-fold) and intracellular 10-deacetyl paclitaxel (2.5-fold). Light significantly increased the expression level of PAL, DBTNBT, BAPT, and T13αOH genes, whereas it had no effect on the expression of DXS, a gene active at the beginning of the taxane biosynthetic pathway. AIP had no significant effect on the expression of the target genes. In conclusion, the light-induced activation of PAL transcription and altered expression of relevant biosynthetic genes reduced cell growth and increased the content of total phenolic compounds and taxanes. These findings can be applied to improve taxane production in controlled cultures and bioreactors.


Subject(s)
Taxus , Bridged-Ring Compounds , Cell Culture Techniques , Flavonoids/metabolism , Gene Expression , Paclitaxel , Phenols/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Taxoids , Taxus/genetics , Taxus/metabolism
5.
Plant Cell Rep ; 41(4): 853-871, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34984531

ABSTRACT

KEY MESSAGE: Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.


Subject(s)
Antineoplastic Agents , Taxus , Gene Expression Regulation, Plant , Lipid Droplets/metabolism , Paclitaxel/metabolism , Paclitaxel/pharmacology , Taxus/genetics , Taxus/metabolism
6.
Plant Physiol Biochem ; 163: 68-75, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33819716

ABSTRACT

Paclitaxel (PTX), a widely used anticancer agent, is found in the inner bark of several Taxus species, although at such low levels that its extraction is ecologically unsustainable. Biotechnological platforms based on Taxus sp. cell cultures offer an eco-friendlier approach to PTX production, with yields that can be improved by elicitation. However, the also limited excretion of target compounds from the producer cells to the medium hampers their extraction and purification. In this context, we studied the effect of treating T. media cell cultures with the elicitor coronatine (COR) and calix[8]arenes (CAL), nanoparticles that can host lipophilic compounds within their macrocyclic scaffold. The highest taxane production (103.5 mg.L-1), achieved after treatment with COR (1 µM) and CAL (10 mg.L-1), was 15-fold greater than in the control, and PTX represented 82% of the total taxanes analyzed. Expression levels of the flux-limiting PTX biosynthetic genes, BAPT and DBTNBT, increased after the addition of COR, confirming its elicitor action, but not CAL. The CAL treatment significantly enhanced taxane excretion, especially when production levels were increased by COR; 98% of the total taxanes were found in the culture medium after COR + CAL treatment. By forming complexes with PTX, the nanoparticles facilitated its excretion to the medium, and by protecting cells from PTX toxicity, its intra-and extra-cellular degradation may have been avoided. The addition of COR and CAL to T. media cell cultures is therefore a bio-sustainable and economically viable system to improve the yield of this important anticancer compound.


Subject(s)
Indenes , Taxus , Amino Acids , Cell Culture Techniques , Cells, Cultured , Paclitaxel/pharmacology
7.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327619

ABSTRACT

Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.

8.
Article in English | MEDLINE | ID: mdl-32528936

ABSTRACT

Engineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of the taxane biosynthetic pathway. Of the five unknown steps, three are thought to involve cytochrome P450-like hydroxylases. In the current work, after an in-depth in silico characterization of four candidate enzymes proposed in a previous cDNA-AFLP assay, TB506 was selected as a candidate for the hydroxylation of the taxane side chain. A docking assay indicated TB506 is active after the attachment of the side chain based on its affinity to the ligand 3'N-dehydroxydebenzoyltaxol. Finally, the involvement of TB506 in the last hydroxylation step of the paclitaxel biosynthetic pathway was confirmed by functional assays. The identification of this hydroxylase will contribute to the development of alternative sustainable paclitaxel production systems using synthetic biology techniques.

9.
Plant Cell Physiol ; 61(3): 576-583, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31841159

ABSTRACT

Taxane diterpenes are secondary metabolites with an important pharmacological role in the treatment of cancer. Taxus spp. biofactories have been used for taxane production, but the lack of knowledge about the taxane biosynthetic pathway and its molecular regulation hinders their optimal function. The difficulties in introducing foreign genes in Taxus spp. genomes hinder the study of the molecular mechanisms involved in taxane production, and a new approach is required to overcome them. In this study, a reliable, simple and fast method to obtain Taxus � media protoplasts was developed, allowing their manipulation in downstream assays for the study of physiological changes in Taxus spp. cells. Using this method, Taxus protoplasts were transiently transfected for the first time, corroborating their suitability for transfection assays and the study of specific physiological responses. The two assayed transcription factors (BIS2 and TSAR2) had a positive effect on the expression of several taxane-related genes, suggesting their potential use for the improvement of taxane yields. Furthermore, the results indicate that the developed method is suitable for obtaining T. � media protoplasts for transfection with the aim of unraveling regulatory mechanisms in taxane production.


Subject(s)
Protoplasts/metabolism , Taxoids/metabolism , Taxus/genetics , Taxus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection/methods , Biosynthetic Pathways/genetics , Bridged-Ring Compounds , Cells, Cultured , Diterpenes/metabolism , Gene Expression Regulation, Plant
10.
Plant Physiol Biochem ; 141: 133-141, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31163340

ABSTRACT

Ruscus aculeatus is a threatened medicinal plant whose main bioactive components, the ruscogenins, have long been used in the treatment of hemorrhoids and varicose veins, but recently demonstrated activity against some types of cancer. Plant cell biofactories could constitute an alternative to the whole plant as a source of ruscogenins. In this pipeline, despite the in vitro recalcitrance of R. aculeatus, after many attempts we developed friable calli and derived plant cell suspensions, and their ruscogenin production was compared with that of organized in vitro plantlet and root-rhizome cultures. Root-rhizomes showed a higher capacity for biomass and ruscogenin production than the cell suspensions and the yields were greatly improved by elicitation with coronatine. Although ruscogenins accumulate in plants mainly in the root-rhizome, it was demonstrated that the aerial part could play an important role in their biosynthesis, as production was higher in the whole plant than in the root-rhizome cultures.


Subject(s)
Biotechnology/methods , Ruscus/metabolism , Spirostans/metabolism , Amino Acids/pharmacology , Biomass , Cell Culture Techniques , Indenes/pharmacology , Iran , Light , Plant Cells , Plant Extracts , Plant Roots , Plants, Medicinal , Rhizome , Saponins , Seeds/metabolism , Tissue Culture Techniques
11.
Int J Mol Sci ; 20(10)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096565

ABSTRACT

Many medicinal plant species are currently threatened in their natural habitats because of the growing demand for phytochemicals worldwide. A sustainable alternative for the production of bioactive plant compounds are plant biofactories based on cell cultures and organs. In addition, plant extracts from biofactories have significant advantages over those obtained from plants, since they are free of contamination by microorganisms, herbicides and pesticides, and they provide more stable levels of active ingredients. In this context, we report the establishment of Satureja khuzistanica cell cultures able to produce high amounts of rosmarinic acid (RA). The production of this phytopharmaceutical was increased when the cultures were elicited with coronatine and scaled up to a benchtop bioreactor. S. khuzistanica extracts enriched in RA were found to reduce the viability of cancer cell lines, increasing the sub-G0/G1 cell population and the activity of caspase-8 in MCF-7 cells, which suggest that S. khuzistanica extracts can induce apoptosis of MCF-7 cells through activation of the extrinsic pathway. In addition, our findings indicate that other compounds in S. khuzistanica extracts may act synergistically to potentiate the anticancer activity of RA.


Subject(s)
Aziridines/pharmacology , Cinnamates/metabolism , Cinnamates/pharmacology , Cyclohexenes/pharmacology , Depsides/metabolism , Depsides/pharmacology , Endangered Species , Plant Extracts/pharmacology , Satureja/metabolism , Adenocarcinoma/drug therapy , Bioreactors , Caspase 8/metabolism , Caspases/metabolism , Cell Culture Techniques , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor/drug effects , Cell Survival/drug effects , Hep G2 Cells/drug effects , Humans , MCF-7 Cells , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Satureja/growth & development , Rosmarinic Acid
12.
Eng Life Sci ; 19(12): 872-879, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32624979

ABSTRACT

Plant cell biofactories offer great advantages for the production of plant compounds of interest, although certain limitations still need to be overcome before their maximum potential is reached. One obstacle is the gradual loss of secondary metabolite production during in vitro culture maintenance, which is an important impediment in the development of large-scale production systems. The relationship between in vitro maintenance and epigenetic changes has been demonstrated in several plant species; in particular, methylation levels have been found to increase in in vitro cultures over time. Higher DNA methylation levels have been correlated with a low yield of secondary metabolites in in vitro plant cell cultures. The longer the period of subculturing, the more methylated cytosines were found throughout the genome, and secondary metabolism decreased significantly. This review summarizes different studies on epigenetic changes during the maintenance of in vitro cell cultures and the insights they provide on the mechanisms involved. It concludes by looking at the perspectives for new approaches designed to avoid declines in metabolite production.

13.
J Plant Physiol ; 228: 197-207, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29960916

ABSTRACT

Linum album is a herbaceous plant with medical interest due to its content of podophyllotoxin (PTOX), an aryltetralin lignan with cytotoxic activity. Previous studies in our laboratory showed that cell suspension cultures of L. album produced more PTOX than methoxypodophyllotoxin (6-MPTOX), both lignans being formed from the same precursor after divergence close to the end of the biosynthetic pathway. In contrast, the hairy roots produced more 6-MPTOX than PTOX. Taking into account this variability, we were interested to know if the lignan profile of an in vitro PTOX-producing L. album plant changes according to the biotechnological system employed and, if so, if this is due to cell dedifferentiation and/or transformation events. With this aim, we established four biotechnological systems: (1) Wild type cell suspensions, (2) transformed cell suspensions, (3) adventitious roots and (4) hairy roots. We determined the production of four aryltetralin lignans: PTOX, 6-MPTOX, deoxypodophyllotoxin (dPTOX) and ß-peltatin. The results show that in vitro plantlets, WT cells and transformed cells predominantly produced PTOX, production being 11-fold higher in the plantlets. Otherwise, the adventitious and hairy roots predominantly produced 6-MPTOX, the adventitious roots being the most productive, with MPTOX levels 1.58-fold higher than in transformed roots. We can infer from these results that in the studied plants, cell differentiation promoted the formation of 6-MPTOX over PTOX, while transformation did not influence the lignan pattern.


Subject(s)
Flax/metabolism , Lignans/metabolism , Plant Roots/metabolism , Amino Acids , Biotechnology , Cell Differentiation/physiology , Indenes
14.
Plant Cell Physiol ; 59(11): 2255-2267, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30060238

ABSTRACT

Plant cell biofactories represent a promising solution to the increasing demand for plant-derived compounds, but there are still limiting factors that prevent optimal production, including the loss of yield during in vitro maintenance. Our results reveal a clear correlation between genomic methylation levels and a progressive decline in taxane production in Taxus spp. cell cultures. A comparative study of two cell lines, one 10 years old and low productive and the other new and high productive, revealed important differences in appearance, growth, taxane accumulation and expression levels of several taxane biosynthetic genes. Differences in taxane content and gene expression profile indicate an altered pathway regulation and that the BAPT gene, located in the center of the expression network of taxane biosynthetic genes, is active in a potentially flux-limiting step. The methylation patterns of the BAPT gene were studied in both cell lines by bisulfite sequencing, which revealed high rates of CHH methylated cytosines on the core promoter. Using a bioinformatics approach, this hotspot was identified as a Y-patch promoter element. The Y-patch may play a key role in the epigenetic regulation of the taxane biosynthetic pathway, which would open up novel genetic engineering strategies toward stable and high productivity.


Subject(s)
Gene Expression Regulation, Plant , Paclitaxel/biosynthesis , Plant Proteins/metabolism , Taxus/metabolism , Bridged-Ring Compounds/metabolism , Cells, Cultured , DNA Methylation , Metabolic Networks and Pathways , Paclitaxel/metabolism , Plant Proteins/genetics , Promoter Regions, Genetic , Taxoids/metabolism , Taxus/genetics , Transcriptome
15.
J Plant Physiol ; 228: 47-58, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29852334

ABSTRACT

The anticancer compound podophyllotoxin and other related lignans can be produced in Linum album in vitro cultures, although their biosynthesis varies according to the degree of differentiation of the plant material. In general, L. album cell cultures do not form the same lignans as roots or other culture systems. Our aim was to explore how the lignan-producing capacity of organogenic cell masses is affected by the conditions that promote their formation and growth. Thus, L. album biomass obtained from plantlets was cultured in darkness or light, with or without the addition of plant growth regulators, and the levels of podophyllotoxin, methoxypodophyllotoxin and other related lignans were determined in each of these conditions. The organogenic capacity of the cell biomass grown in the different conditions was studied directly and also with light and scanning electronic microscopy, leading to the observation of.several somatic embryos and well-formed shoots. The main lignan produced was methoxypodophyllotoxin, whose production was clearly linked to the organogenic capacity of the cell biomass, which to a lesser extent was also the case for podophyllotoxin.


Subject(s)
Flax/metabolism , Podophyllotoxin/metabolism , Cells, Cultured , Drugs, Chinese Herbal , Flax/cytology , Morphogenesis/physiology , Plant Shoots/metabolism , Podophyllotoxin/analogs & derivatives
16.
Front Plant Sci ; 9: 335, 2018.
Article in English | MEDLINE | ID: mdl-29616056

ABSTRACT

Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated ß-cyclodextrins (ß-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus ß-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and ß-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures.

17.
Sci Rep ; 7(1): 17976, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269790

ABSTRACT

Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 µg L-1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 µg L-1 and 86.4 µg L-1, respectively), as well as its glucoside piceid (up to 339.7 µg L-1). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules.


Subject(s)
Nicotiana/metabolism , Plant Roots/metabolism , Stilbenes/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genetic Engineering , Metabolic Networks and Pathways , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plants, Genetically Modified , Nicotiana/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
18.
Plant Physiol Biochem ; 118: 130-137, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28633085

ABSTRACT

Transplastomic plants are a system of choice for the mass production of biopharmaceuticals due to the polyploidy of the plastid genome and the low risk of pollen-mediated outcrossing because of maternal inheritance. However, as field-grown plants, they can suffer contamination by agrochemicals and fertilizers, as well as fluctuations in yield due to climatic changes and infections. Tissue-type plasminogen activator (tPA), a protein used to treat heart attacks, converts plasminogen into plasmine, which digests fibrin and induces the dissolution of fibrin clots. Recently, we obtained transplastomic tobacco plants carrying the K2S gene encoding truncated human tPA (reteplase) with improved biological activity, and confirmed the presence of the target protein in the transgenic plant leaves. Considering the advantages of plant cell cultures for biopharmaceutical production, we established a cell line derived from the K2S tobacco plants. The active form of reteplase was quantified in cultures grown in light or darkness, with production 3-fold higher in light.


Subject(s)
Nicotiana/metabolism , Plant Cells/metabolism , Tissue Plasminogen Activator/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Tissue Plasminogen Activator/genetics , Nicotiana/cytology , Nicotiana/genetics
19.
Eng Life Sci ; 17(4): 413-419, 2017 Apr.
Article in English | MEDLINE | ID: mdl-32624786

ABSTRACT

Centella asiatica is a herbaceous plant of Asian traditional medicine. Besides wound healing, this plant is recommended for the treatment or care of various skin conditions such as dry skin, leprosy, varicose ulcers, eczema, and/or psoriasis. Triterpene saponins, known as centellosides, are the main metabolites associated with these beneficial effects. Considering the interest in these high value active compounds, there is a need to develop biosustainable and economically viable processes to produce them. Previous work using C. asiatica plant cell culture technology demonstrated the efficient conversion of amyrin derivatives into centellosides, opening a new way to access these biomolecules. The current study was aimed at increasing the production of centellosides in C. asiatica plant cell cultures. Herein, we report the application of a new elicitor, coronatine, combined with the addition of amyrin-enriched resins as potential sustainable precursors in the centelloside pathway, for a positive synergistic effect on centelloside production. Our results show that coronatine is a powerful elicitor for increasing centelloside production and that treatments with sustainable natural sources of amyrins enhance centelloside yields. This process can be scaled up to an orbitally shaken CellBag, thereby increasing the capacity of the system for producing biomass and centellosides.

20.
Curr Med Chem ; 23(39): 4418-4441, 2016.
Article in English | MEDLINE | ID: mdl-27781948

ABSTRACT

BACKGROUND: Bioactive plant secondary metabolites have complex chemical structures, which are specific to each plant species/family, and accumulate in tiny amounts. The growing market demand for many phytochemicals can lead to the over-harvesting of medicinal plants in their natural habitat, endangering species in the process. OBJECTIVE: An ongoing challenge for our society is therefore to develop a bio-sustainable production of phytochemicals, among other natural resources. Cancer is currently a major health problem, responsible for approximately 8.2 million deaths per year worldwide. We therefore focused this review on cancer therapeutic agents from plants and their biotechnological production. METHOD AND RESULTS: An extensive review of the literature shows that although a wide range of phytochemicals have demonstrated anti-proliferative activity in vitro, only a few examples of plant-based drugs are included in the Anatomical Therapeutic Chemical (ATC) classification as antineoplastic agents. These include vinca alkaloids and their derivatives (L01CA), podophyllotoxin derivatives (L01CB), and paclitaxel and its derivatives (L01CD), as well as camptothecin derivatives (L01XX). These compounds all have in common a complex chemical structure, a scarce distribution in nature, and a high added value. After describing the chemical structures, natural sources and biological activities of these anticancer compounds, we focus on the state of the art in their biotechnological production in plant cell biofactories. CONCLUSION: More in-depth studies are required on the biosynthesis of target plant metabolites and its regulation in order to increase their biotechnological production in plant cell factories and ultimately implement these biosustainable processes at an industrial level.


Subject(s)
Antineoplastic Agents, Phytogenic/biosynthesis , Antineoplastic Agents, Phytogenic/pharmacology , Bioreactors , Biotechnology/methods , Plant Cells/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...