Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17159, 2024.
Article in English | MEDLINE | ID: mdl-38562997

ABSTRACT

Domestic cats (Felis catus) play a dual role in society as both companion animals and predators. When provided with unsupervised outdoor access, cats can negatively impact native wildlife and create public health and animal welfare challenges. The effective implementation of management strategies, such as buffer zones or curfews, requires an understanding of home range size, the factors that influence their movement, and the types of habitats they use. Here, we used a community/citizen scientist approach to collect movement and habitat use data using GPS collars on owned outdoor cats in the Kitchener-Waterloo-Cambridge-Guelph region, southwestern Ontario, Canada. Mean (± SD) 100% minimum convex polygon home range size was 8 ± 8 ha (range: 0.34-38 ha) and was positively associated with road density but not with intrinsic factors such as boldness, sex, or age. With regards to habitat selection, cats used greenspaces, roads, and agricultural land less often than predicted but strongly selected for impervious surfaces (urban areas other than greenspaces or roads). Our results suggest that wildlife near buildings and residential areas are likely at the greatest risk of cat predation and that a buffer size of 840 m would be needed to restrict cats from entering areas of conservation concern.


Subject(s)
Animals, Wild , Homing Behavior , Animals , Cats , Ontario , Ecosystem , Predatory Behavior
2.
Ultrasonics ; 132: 106994, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37015175

ABSTRACT

Automated ultrasound imaging assessment of the effect of CoronaVirus disease 2019 (COVID-19) on lungs has been investigated in various studies using artificial intelligence-based (AI) methods. However, an extensive analysis of state-of-the-art Convolutional Neural Network-based (CNN) models for frame-level scoring, a comparative analysis of aggregation techniques for video-level scoring, together with a thorough evaluation of the capability of these methodologies to provide a clinically valuable prognostic-level score is yet missing within the literature. In addition to that, the impact on the analysis of the posterior probability assigned by the network to the predicted frames as well as the impact of temporal downsampling of LUS data are topics not yet extensively investigated. This paper takes on these challenges by providing a benchmark analysis of methods from frame to prognostic level. For frame-level scoring, state-of-the-art deep learning models are evaluated with additional analysis of best performing model in transfer-learning settings. A novel cross-correlation based aggregation technique is proposed for video and exam-level scoring. Results showed that ResNet-18, when trained from scratch, outperformed the existing methods with an F1-Score of 0.659. The proposed aggregation method resulted in 59.51%, 63.29%, and 84.90% agreement with clinicians at the video, exam, and prognostic levels, respectively; thus, demonstrating improved performances over the state of the art. It was also found that filtering frames based on the posterior probability shows higher impact on the LUS analysis in comparison to temporal downsampling. All of these analysis were conducted over the largest standardized and clinically validated LUS dataset from COVID-19 patients.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Prognosis , Benchmarking , Ultrasonography
3.
Appl Soft Comput ; 133: 109926, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36532127

ABSTRACT

COVID-19 raised the need for automatic medical diagnosis, to increase the physicians' efficiency in managing the pandemic. Among all the techniques for evaluating the status of the lungs of a patient with COVID-19, lung ultrasound (LUS) offers several advantages: portability, cost-effectiveness, safety. Several works approached the automatic detection of LUS imaging patterns related COVID-19 by using deep neural networks (DNNs). However, the decision processes based on DNNs are not fully explainable, which generally results in a lack of trust from physicians. This, in turn, slows down the adoption of such systems. In this work, we use two previously built DNNs as feature extractors at the frame level, and automatically synthesize, by means of an evolutionary algorithm, a decision tree (DT) that aggregates in an interpretable way the predictions made by the DNNs, returning the severity of the patients' conditions according to a LUS score of prognostic value. Our results show that our approach performs comparably or better than previously reported aggregation techniques based on an empiric combination of frame-level predictions made by DNNs. Furthermore, when we analyze the evolved DTs, we discover properties about the DNNs used as feature extractors. We make our data publicly available for further development and reproducibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...