Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25615106

ABSTRACT

In this paper we investigate the statistical behavior of an annealed continuous damage model. For different model variations we study distributions of times to failure and compare these results with the classical case of metastable nucleation in statistical physics. We show that our model has a tuning parameter, related to the degree of damage reversibility, that determines the model's behavior. Depending on the value of this parameter, our model exhibits statistical behavior either similar to classical reversible nucleation phenomena in statistical physics or to an absolutely different type of behavior intrinsic to systems with damage. This comparison allows us to investigate possible similarities and differences between damage phenomena and reversible nucleation.

2.
Philos Trans A Math Phys Eng Sci ; 364(1846): 2495-513, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16893800

ABSTRACT

A new general dynamical systems approach to data analysis is presented that allows one to track slowly evolving variables responsible for non-stationarity in a fast subsystem. The method is based on the idea of phase space warping, which refers to the small distortions in the fast subsystem's phase space that results from the slow drift, and uses short-time reference model prediction error as its primary measurement of this phenomenon. The basic theory is presented and the issues associated with its implementation in a practical algorithm are discussed. A vector-tracking version of the procedure, based on smooth orthogonal decomposition analysis, is applied to the study of a nonlinear vibrating beam experiment in which a crack propagates to complete fracture. Our method shows that the damage evolution is governed by a scalar process, and we are able to give real-time estimates of the current damage state and identify the governing damage evolution model. Using a final recursive estimation step based on this model, the time to failure is continuously and accurately predicted well in advance of actual failure.


Subject(s)
Algorithms , Equipment Failure Analysis/methods , Feedback , Mechanics , Nonlinear Dynamics , Oscillometry/methods , Systems Theory , Computer Simulation , Kinetics
3.
J Biomech Eng ; 123(1): 27-32, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11277298

ABSTRACT

This study quantified the relationships between local dynamic stabiliht and variabilitr during continuous overground and treadmill walking. Stride-to-stride standard deviations were computed from temporal and kinematic data. Marimum finite-time Lyapunov exponents were estimated to quantify local dynamic stability. Local stability of gait kinematics was shown to be achieved over multiple consecutive strides. Traditional measures of variability poorly predicted local stability. Treadmill walking was associated with significant changes in both variability and local stability. Thus, motorized treadmills may produce misleading or erroneous results in situations where changes in neuromuscular control are likely to affect the variability and/or stability of locomotion.


Subject(s)
Exercise Test , Gait/physiology , Models, Biological , Adult , Biomechanical Phenomena , Female , Humans , Male , Reference Values , Walking/physiology
4.
J Biomech ; 33(10): 1269-77, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10899337

ABSTRACT

Patients with diabetic peripheral neuropathy are significantly more likely to fall while walking than subjects with intact sensation. While it has been suggested that these patients walk slower to improve locomotor stability, slower speeds are also associated with increased locomotor variability, and increased variability has traditionally been equated with loss of stability. If the latter were true, this would suggest that slowing down, as a locomotor control strategy, should be completely antithetical to the goal of maintaining stability. The present study resolves these seemingly paradoxical findings by using methods from nonlinear time series analysis to directly quantify the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Fourteen patients with severe peripheral neuropathy and 12 gender-, age-, height-, and weight-matched non-diabetic controls participated. Sagittal plane angles of the right hip, knee, and ankle joints and tri-axial accelerations of the trunk were measured during 10 min of continuous overground walking at self-selected speeds. Maximum finite-time Lyapunov exponents were computed for each time series to quantify the local dynamic stability of these movements. Neuropathic patients exhibited slower walking speeds and better local dynamic stability of upper body movements in the horizontal plane than did control subjects. The differences in local dynamic stability were significantly predicted by differences in walking speed, but not by differences in sensory status. These results support the hypothesis that reductions in walking speed are a compensatory strategy used by neuropathic patients to maintain dynamic stability of the upper body during level walking.


Subject(s)
Diabetic Neuropathies/physiopathology , Peripheral Nervous System Diseases/physiopathology , Walking , Aged , Female , Humans , Male , Middle Aged , Models, Theoretical , Nonlinear Dynamics , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...