Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
GM Crops Food ; 11(3): 171-183, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32522061

ABSTRACT

The Brazilian Sucro-energy Sector produces both energy, in the form of ethanol fuel, industrial steam and electricity, and sugar. Centro de Tecnologia Canavieira (CTC), the leading Brazilian sugarcane breeding company, has developed a pipeline of insect-protected sugarcane varieties to control sugarcane borer damage. The goal of this manuscript is to present the results of studies with three genetically modified (GM) sugarcane varieties and to evaluate the published literature regarding the possible presence of GM sugarcane DNA or protein in raw or refined sugar. Specifically, two varieties of approved GM sugarcane, CTC91087-6 and CTC175-A, and an experimental CTC variety, were grown in four individual plots to produce four batches each of processed raw sugar using standard smaller-scale laboratory processing methods resulting in a total of 12 independent batches of raw sugar. Herein, we report the development of event-specific probes and DNA detection methods, designed to detect the junction of sugarcane genomic DNA and the inserted DNA of the two approved GM varieties. An identical approach was used for the testing of sugar made from the experimental CTC variety. The methodology used TaqMan® real-time PCR and ELISA assays validated for the four GM proteins expressed by these three events (Cry1Ab, Cry1Ac, NPTII, and PAT (bar)). The developed assays had very low limits of detection (LODs) for the various event-specific DNA probes (7.2-25 ng/g sugar) and insecticidal and selectable marker proteins (2.9-10.9 ng/g sugar). No event-specific DNA and no GM proteins were detectable in the 12 independent batches of raw sugar produced from these three GM sugarcane events. The results of this study, using very sensitive methods and testing several sugar batches, extend the conclusions of previous studies, reviewed herein, that showed the extensive degradation and removal of DNA and protein during sugarcane processing. Overall, these results indicate that there are no distinguishable differences between the highly purified, chemically defined sugar produced from conventional or GM varieties.


Subject(s)
Saccharum , Animals , Brazil , DNA , Plants, Genetically Modified , Sugars
2.
GM Crops Food ; 10(4): 208-219, 2019.
Article in English | MEDLINE | ID: mdl-31431143

ABSTRACT

A Cry1Ac-expressing sugarcane cultivar, CTC91087-6, has been developed by Centro de Tecnologia Canavieira (CTC) to be resistant to the sugarcane borer (Diatraea saccharalis). This genetically modified event was developed using Agrobacterium-mediated transformation and the help of the selectable marker phosphinothricin N-acetyltransferase (PAT) expressed from bar gene. We describe here a detailed characterization of CTC91087-6 event with respect to protein expression, nutritional composition, and assessment of its derived DNA and proteins in raw sugar. Expression of the Cry1Ac and PAT (bar) proteins produced by CTC91087-6 was evaluated in different tissues and at different times during the growing season. The new proteins are preferentially expressed in leaves, are produced at low levels in stalks, and are near the limits of detection in root tissues. The levels of Cry1Ac were much higher than PAT in all evaluated tissues. Furthermore, Cry1Ac levels in CTC91087-6 leaves are stable at various times during sugarcane cultivation cycle, assuring borer control throughout the complete crop cycle. Assessment of CTC91087-6 tissues for key food and feed nutrients as recommended by OECD to assess the safety of new varieties of sugarcane showed compositional equivalence to the conventional counterpart CTC9001 and to other commercial sugarcane varieties used as references. Raw sugar samples produced from CTC91087-6 did not contain DNA corresponding to cry1Ac and bar genes nor DNA specifically derived from CTC91087-6. In a similar way, there is no detection of Cry1Ac and PAT proteins in raw sugar produced from CTC91087-6. Taken together these results show that CTC91087-6 stably expresses Cry1Ac and PAT proteins and is substantially equivalent to the conventional counterpart CTC9001.


Subject(s)
Moths , Saccharum , Animals , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Insecta , Plant Leaves , Plants, Genetically Modified
3.
Plant Sci ; 259: 35-47, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28483052

ABSTRACT

Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.


Subject(s)
Solanum lycopersicum/genetics , Trichomes/genetics , MicroRNAs/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Mech Dev ; 130(1): 61-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22659398

ABSTRACT

Tendrils can be found in different plant species. In legumes such as pea, tendrils are modified leaves produced by the vegetative meristem but in the grape vine, a same meristem is used to either form a tendril or an inflorescence. Passiflora species originated in ecosystems in which there is dense vegetation and competition for light. Thus climbing on other plants in order to reach regions with higher light using tendrils is an adaptive advantage. In Passiflora species, after a juvenile phase, every leaf has a subtending vegetative meristem, and a separate meristem that forms both flowers and a tendril. Thus, flowers are formed once a tendril is formed yet whether or not this flower will reach bloom depends on the environment. For example, in Passiflora edulis flowers do not develop under shaded conditions, so that tendrils are needed to bring the plant to positions were flowers can develop. This separate meristem generally forms a single tendril in different Passiflora species yet the number and position of flowers formed from the same meristem diverges among species. Here we display the variation among species as well as variation within a single species, P. edulis. We also show that the number of flowers within a specific genotype can be modulated by applying Cytokinins. Finally, this separate meristem is capable of transforming into a leaf-producing meristem under specific environmental conditions. Thus, behind what appears to be a species-specific rigid program regarding the fate of this meristem, our study helps to reveal a plasticity normally restrained by genetic, hormonal and environmental constraints.


Subject(s)
Flowers , Meristem , Plant Leaves , Vitis/growth & development , Environment , Flowers/drug effects , Flowers/growth & development , Flowers/ultrastructure , Genotype , Meristem/drug effects , Meristem/growth & development , Meristem/ultrastructure , Microscopy, Electron, Scanning , Passiflora/genetics , Passiflora/growth & development , Phenylurea Compounds/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Species Specificity , Thiadiazoles/pharmacology , Vitis/drug effects , Vitis/genetics
5.
Plant Physiol ; 159(4): 1511-23, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22718775

ABSTRACT

TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/growth & development , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Cell Size/drug effects , Gene Expression Regulation, Plant/drug effects , Glucocorticoids/pharmacology , Green Fluorescent Proteins/metabolism , Models, Biological , Mutation/genetics , Phenotype , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/ultrastructure , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Transport/drug effects , Transcription Factors/genetics
6.
Comp Funct Genomics ; 2012: 510549, 2012.
Article in English | MEDLINE | ID: mdl-22536117

ABSTRACT

The genus Passiflora provides a remarkable example of floral complexity and diversity. The extreme variation of Passiflora flower morphologies allowed a wide range of interactions with pollinators to evolve. We used the analysis of expressed sequence tags (ESTs) as an approach for the characterization of genes expressed during Passiflora reproductive development. Analyzing the Passiflora floral EST database (named PASSIOMA), we found sequences showing significant sequence similarity to genes known to be involved in reproductive development such as MADS-box genes. Some of these sequences were studied using RT-PCR and in situ hybridization confirming their expression during Passiflora flower development. The detection of these novel sequences can contribute to the development of EST-based markers for important agronomic traits as well as to the establishment of genomic tools to study the naturally occurring floral diversity among Passiflora species.

SELECTION OF CITATIONS
SEARCH DETAIL
...