Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 100(3): 304-15, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18073782

ABSTRACT

Caenorhabditis elegans and C. briggsae have many parallels in terms of morphology, life history and breeding system. Both species also share similar low levels of molecular diversity, although the global sampling of natural populations has been limited and geographically biased. In this study, we describe the first cultured isolates of C. elegans and C. briggsae from sub-Saharan Africa. We characterize these samples for patterns of nucleotide polymorphism and vulva precursor cell lineage, and conduct a series of hybrid crosses in C. briggsae to test for genetic incompatibilities. The distribution of genetic diversity confirms a lack of geographic structure to C. elegans sequences but shows genetic differentiation of C. briggsae into three distinct clades that may correspond to three latitudinal ranges. Despite low levels of molecular diversity, we find considerable variation in cell division frequency in African C. elegans for the P3.p vulva precursor cell, and in African C. briggsae for P4.p, a variation that was not previously observed in this species. Hybrid crosses did not reveal major incompatibilities between C. briggsae strains from Africa and elsewhere, and there was some evidence of inbreeding depression. These new African isolates suggest that important ecological factors may be shaping the patterns of diversity in C. briggsae, and that despite many similarities between C. elegans and C. briggsae, there may be more subtle differences in their natural histories than previously appreciated.


Subject(s)
Caenorhabditis/genetics , Genetic Variation , Phenotype , Animals , Base Sequence , Caenorhabditis/anatomy & histology , Cell Differentiation/physiology , Cell Lineage , Crosses, Genetic , Female , Haplotypes/genetics , Hybridization, Genetic/genetics , Kenya , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , South Africa , Species Specificity , Vulva/cytology
2.
J Evol Biol ; 18(1): 27-34, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15669958

ABSTRACT

An understanding of the forces that contribute to the phylogenetically widespread phenomenon of sexual reproduction has posed a longstanding problem in evolutionary biology. Mutational theories contend that sex can be maintained when the deleterious mutation rate is sufficiently high, although empirical evidence is equivocal and experimental studies are rare. To test the influence of mutation on the evolution of obligate outcrossing, I introduced a genetic polymorphism for breeding system into populations of the nematode Caenorhabditis elegans with high- and low-mutation rate genetic backgrounds and tracked the change in frequency of females, hermaphrodites, and males over approximately 21 generations. Hermaphrodites invaded all populations, regardless of mutational background. However, experimental populations with elevated mutation rates experienced more outcrossing and greater retention of females. This provides experimental evidence consistent with deleterious mutational explanations for the evolution of sex in principle, but the action of other processes is required to explain the evolution of sex in entirety.


Subject(s)
Caenorhabditis elegans/genetics , Evolution, Molecular , Mutation , Polymorphism, Genetic , Reproduction , Animals , Disorders of Sex Development , Female , Male , Phylogeny
3.
J Evol Biol ; 16(5): 812-22, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14635896

ABSTRACT

A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models.


Subject(s)
Caenorhabditis elegans/genetics , Evolution, Molecular , Models, Theoretical , Mutation , Reproduction , Animals , Female , Male , Population Dynamics
4.
Proc Natl Acad Sci U S A ; 98(11): 6221-6, 2001 May 22.
Article in English | MEDLINE | ID: mdl-11353840

ABSTRACT

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.


Subject(s)
Biological Evolution , Climate , Fossils , Insecta , Plants , Animals , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL
...