Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Yeast ; 33(8): 433-49, 2016 08.
Article in English | MEDLINE | ID: mdl-26987668

ABSTRACT

Red yeasts ascribed to the species Rhodotorula mucilaginosa are gaining increasing attention, due to their numerous biotechnological applications, spanning carotenoid production, liquid bioremediation, heavy metal biotransformation and antifungal and plant growth-promoting actions, but also for their role as opportunistic pathogens. Nevertheless, their characterization at the 'omic' level is still scarce. Here, we applied different proteomic workflows to R. mucilaginosa with the aim of assessing their potential in generating information on proteins and functions of biotechnological interest, with a particular focus on the carotenogenic pathway. After optimization of protein extraction, we tested several gel-based (including 2D-DIGE) and gel-free sample preparation techniques, followed by tandem mass spectrometry analysis. Contextually, we evaluated different bioinformatic strategies for protein identification and interpretation of the biological significance of the dataset. When 2D-DIGE analysis was applied, not all spots returned a unambiguous identification and no carotenogenic enzymes were identified, even upon the application of different database search strategies. Then, the application of shotgun proteomic workflows with varying levels of sensitivity provided a picture of the information depth that can be reached with different analytical resources, and resulted in a plethora of information on R. mucilaginosa metabolism. However, also in these cases no proteins related to the carotenogenic pathway were identified, thus indicating that further improvements in sequence databases and functional annotations are strictly needed for increasing the outcome of proteomic analysis of this and other non-conventional yeasts. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Fungal Proteins/metabolism , Rhodotorula/metabolism , Biotechnology , Carotenoids/biosynthesis , Databases, Protein , Electrophoresis, Gel, Two-Dimensional/methods , Fungal Proteins/genetics , Gene Ontology , Proteomics/methods , Rhodotorula/genetics , Sequence Analysis, Protein , Tandem Mass Spectrometry/methods
2.
J Ind Microbiol Biotechnol ; 40(8): 865-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23660998

ABSTRACT

Flow cytometry was used to assess ß-carotene content, cell membrane permeability, cell size and granularity in Rhodotorula glutinis mutant 400A15 grown under different oxygen transfer coefficients (k L a) and carbon to nitrogen ratios (C/N). A Doehlert distribution was used in order to select the best conditions that induced the highest carotenoids production. The highest ß-carotene content (0.79 mg g(-1) DCW) at the lowest k L a and C/N (5 × 10(-3) s(-1) and 11.3 respectively). Under these conditions, the biomass concentration attained 18.60 g L(-1). The highest ratio of cells with permeabilised membranes (2.6 %), and the highest cell size and granularity were also obtained under these conditions. It was observed that C/N showed a stronger influence than the k L a on the measured cell parameters.


Subject(s)
Flow Cytometry , Rhodotorula/metabolism , beta Carotene/biosynthesis , Biomass , Carbon/metabolism , Mutation , Nitrogen/metabolism , Rhodotorula/cytology , Rhodotorula/genetics , beta Carotene/analysis
3.
World J Microbiol Biotechnol ; 29(6): 1009-17, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23355137

ABSTRACT

In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in ß-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.


Subject(s)
Carotenoids/metabolism , Glycerol/metabolism , Metabolic Engineering/methods , Rhodotorula/growth & development , Rhodotorula/metabolism , Biomass , Culture Media/chemistry , Mutagenesis , Peptones/metabolism , Rhodotorula/genetics , Rhodotorula/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...