Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 56(1): 23, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553689

ABSTRACT

BACKGROUND: In the current context of climate change, livestock production faces many challenges to improve the sustainability of systems. Dairy farming, in particular, must find ways to select animals that will be able to achieve sufficient overall production while maintaining their reproductive ability in environments with increasing temperatures. With future forecasted climate conditions in mind, this study used data from Holstein and Montbeliarde dairy cattle to: (1) estimate the genetic-by-temperature-humidity index (THI) interactions for female fertility, and (2) evaluate the production-fertility trade-off with increasing values of THI. RESULTS: Two-trait random regression models were fitted for conception rate (fertility) and test-day protein yield (production). For fertility, genetic correlations between different THI values were generally above 0.75, suggesting weak genotype-by-THI interactions for conception rate in both breeds. However, the genetic correlations between the conception rate breeding values at the current average THI (THI = 50, corresponding to a 24-h average temperature of 8 °C at 50% relative humidity) and their slopes (i.e., potential reranking) for heat stress scenarios (THI > 70), were different for each breed. For Montbeliarde, this correlation tended to be positive (i.e., overall the best reproducers are less affected by heat stress), whereas for Holstein it was approximately zero. Finally, our results indicated a weak antagonism between production and fertility, although for Montbeliarde this antagonism intensified with increasing THI. CONCLUSIONS: Within the range of weather conditions studied, increasing temperatures are not expected to exacerbate the fertility-production trade-off. However, our results indicated that the animals with the best breeding values for production today will be the most affected by temperature increases, both in terms of fertility and production. Nonetheless, these animals should remain among the most productive ones during heat waves. For Montbeliarde, the current selection program for fertility seems to be adequate for ensuring the adaptation of fertility traits to temperature increases, without adverse effects on production. Such a conclusion cannot be drawn for Holstein. In the future, the incorporation of a heat tolerance index into dairy cattle breeding programs would be valuable to promote the selection of animals adapted to future climate conditions.


Subject(s)
Heat Stress Disorders , Milk , Animals , Cattle/genetics , Female , Humidity , Temperature , Milk/metabolism , Lactation/genetics , Hot Temperature , Fertility/genetics , Heat Stress Disorders/veterinary
2.
Genet Sel Evol ; 56(1): 15, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424504

ABSTRACT

BACKGROUND: Genetic merit, or breeding values as referred to in livestock and crop breeding programs, is one of the keys to the successful selection of animals in commercial farming systems. The developments in statistical methods during the twentieth century and single nucleotide polymorphism (SNP) chip technologies in the twenty-first century have revolutionized agricultural production, by allowing highly accurate predictions of breeding values for selection candidates at a very early age. Nonetheless, for many breeding populations, realized accuracies of predicted breeding values (PBV) remain below the theoretical maximum, even when the reference population is sufficiently large, and SNPs included in the model are in sufficient linkage disequilibrium (LD) with the quantitative trait locus (QTL). This is particularly noticeable over generations, as we observe the so-called erosion of the effects of SNPs due to recombinations, accompanied by the erosion of the accuracy of prediction. While accurately quantifying the erosion at the individual SNP level is a difficult and unresolved task, quantifying the erosion of the accuracy of prediction is a more tractable problem. In this paper, we describe a method that uses the relationship between reference and target populations to calculate expected values for the accuracies of predicted breeding values for non-phenotyped individuals accounting for erosion. The accuracy of the expected values was evaluated through simulations, and a further evaluation was performed on real data. RESULTS: Using simulations, we empirically confirmed that our expected values for the accuracy of PBV accounting for erosion were able to correctly determine the prediction accuracy of breeding values for non-phenotyped individuals. When comparing the expected to the realized accuracies of PBV with real data, only one out of the four traits evaluated presented accuracies that were significantly higher than the expected, approaching h 2 . CONCLUSIONS: We defined an index of genetic correlation between reference and target populations, which summarizes the expected overall erosion due to differences in allele frequencies and LD patterns between populations. We used this correlation along with a trait's heritability to derive expected values for the accuracy ( R ) of PBV accounting for the erosion, and demonstrated that our derived E R | erosion is a reliable metric.


Subject(s)
Models, Genetic , Quantitative Trait Loci , Humans , Animals , Genotype , Phenotype , Breeding , Polymorphism, Single Nucleotide , Selection, Genetic
3.
Genet Sel Evol ; 55(1): 4, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658500

ABSTRACT

BACKGROUND: Heat stress negatively influences cattle welfare, health and productivity. To cope with the forecasted increases in temperature and heat waves frequency, identifying high-producing animals that are tolerant to heat is of capital importance to maintain milk production. This study, based on the joint analysis of on-farm performance and weather data, had two objectives: (1) to determine the response in production performances (milk, fat and protein yields, fat and protein contents) and udder health (somatic cell score) to temperature-humidity index (THI) variations in Montbeliarde cows, and (2) to estimate the interactions between genotype and THI, to enable the identification of the most adapted animals for facing the expected increases in temperature. RESULTS: Test-day records from first and second lactations from 2016 to 2020 were associated with the average THI during the three days before the test-day record. In total, 446,717 test-day records from 55,650 cows in first lactation and 457,516 test-day records from 58,229 cows in second lactation were analysed. The optimal THI was below 55 (i.e. ~ 12-13 °C) for all traits. Individual responses to THI were estimated by random regression models, which also included individual responses to days in milk. Regardless of the stage of lactation, genetic correlations along the THI gradient were above 0.80, which suggests that genotype-by-THI interactions were weak for production and udder health traits. Nevertheless, a variability in the individual slope of decay could be highlighted at high THI. The genetic correlation between production level at moderate THI and the slope at high THI was negative, while for somatic cell score, it was positive, indicating that heat stress amplifies the susceptibility to mastitis. CONCLUSIONS: The optimal THI for French Montbeliarde cows is below 55 for production and udder health traits. Genetic-by-THI interactions are weak in French Montbeliarde cows for production and udder health traits, but not all animals react in the same way to high temperatures. Even if there is little room for improvement, using a heat tolerance index in cattle selection would be relevant to anticipate the expected increases in temperature. Further investigations are needed to interpret this variability on production traits. However, the current selection for mastitis resistance seems appropriate to adapt cattle to rising temperatures.


Subject(s)
Heat Stress Disorders , Milk , Female , Cattle/genetics , Animals , Humidity , Milk/metabolism , Temperature , Mammary Glands, Animal , Lactation/genetics , Genotype , Hot Temperature , Heat Stress Disorders/veterinary
4.
Front Plant Sci ; 13: 1075077, 2022.
Article in English | MEDLINE | ID: mdl-36816478

ABSTRACT

Individuals within a common environment experience variations due to unique and non-identifiable micro-environmental factors. Genetic sensitivity to micro-environmental variation (i.e. micro-environmental sensitivity) can be identified in residuals, and genotypes with lower micro-environmental sensitivity can show greater resilience towards environmental perturbations. Micro-environmental sensitivity has been studied in animals; however, research on this topic is limited in plants and lacking in wheat. In this article, we aimed to (i) quantify the influence of genetic variation on residual dispersion and the genetic correlation between genetic effects on (expressed) phenotypes and residual dispersion for wheat grain yield using a double hierarchical generalized linear model (DHGLM); and (ii) evaluate the predictive performance of the proposed DHGLM for prediction of additive genetic effects on (expressed) phenotypes and its residual dispersion. Analyses were based on 2,456 advanced breeding lines tested in replicated trials within and across different environments in Denmark and genotyped with a 15K SNP-Illumina-BeadChip. We found that micro-environmental sensitivity for grain yield is heritable, and there is potential for its reduction. The genetic correlation between additive effects on (expressed) phenotypes and dispersion was investigated, and we observed an intermediate correlation. From these results, we concluded that breeding for reduced micro-environmental sensitivity is possible and can be included within breeding objectives without compromising selection for increased yield. The predictive ability and variance inflation for predictions of the DHGLM and a linear mixed model allowing heteroscedasticity of residual variance in different environments (LMM-HET) were evaluated using leave-one-line-out cross-validation. The LMM-HET and DHGLM showed good and similar performance for predicting additive effects on (expressed) phenotypes. In addition, the accuracy of predicting genetic effects on residual dispersion was sufficient to allow genetic selection for resilience. Such findings suggests that DHGLM may be a good choice to increase grain yield and reduce its micro-environmental sensitivity.

5.
Genet Sel Evol ; 50(1): 41, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30081816

ABSTRACT

BACKGROUND: Genomic models that link phenotypes to dense genotype information are increasingly being used for infering variance parameters in genetics studies. The variance parameters of these models can be inferred using restricted maximum likelihood, which produces consistent, asymptotically normal estimates of variance components under the true model. These properties are not guaranteed to hold when the covariance structure of the data specified by the genomic model differs substantially from the covariance structure specified by the true model, and in this case, the likelihood of the model is said to be misspecified. If the covariance structure specified by the genomic model provides a poor description of that specified by the true model, the likelihood misspecification may lead to incorrect inferences. RESULTS: This work provides a theoretical analysis of the genomic models based on splitting the misspecified likelihood equations into components, which isolate those that contribute to incorrect inferences, providing an informative measure, defined as [Formula: see text], to compare the covariance structure of the data specified by the genomic and the true models. This comparison of the covariance structures allows us to determine whether or not bias in the variance components estimates is expected to occur. CONCLUSIONS: The theory presented can be used to provide an explanation for the success of a number of recently reported approaches that are suggested to remove sources of bias of heritability estimates. Furthermore, however complex is the quantification of this bias, we can determine that, in genomic models that consider a single genomic component to estimate heritability (assuming SNP effects are all i.i.d.), the bias of the estimator tends to be downward, when it exists.


Subject(s)
Computational Biology/methods , Models, Genetic , Algorithms , Analysis of Variance , Animals , Genomics , Humans , Likelihood Functions
6.
BMC Genomics ; 15: 1171, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25539631

ABSTRACT

BACKGROUND: A haplotype approach to genomic prediction using high density data in dairy cattle as an alternative to single-marker methods is presented. With the assumption that haplotypes are in stronger linkage disequilibrium (LD) with quantitative trait loci (QTL) than single markers, this study focuses on the use of haplotype blocks (haploblocks) as explanatory variables for genomic prediction. Haploblocks were built based on the LD between markers, which allowed variable reduction. The haploblocks were then used to predict three economically important traits (milk protein, fertility and mastitis) in the Nordic Holstein population. RESULTS: The haploblock approach improved prediction accuracy compared with the commonly used individual single nucleotide polymorphism (SNP) approach. Furthermore, using an average LD threshold to define the haploblocks (LD≥0.45 between any two markers) increased the prediction accuracies for all three traits, although the improvement was most significant for milk protein (up to 3.1% improvement in prediction accuracy, compared with the individual SNP approach). Hotelling's t-tests were performed, confirming the improvement in prediction accuracy for milk protein. Because the phenotypic values were in the form of de-regressed proofs, the improved accuracy for milk protein may be due to higher reliability of the data for this trait compared with the reliability of the mastitis and fertility data. Comparisons between best linear unbiased prediction (BLUP) and Bayesian mixture models also indicated that the Bayesian model produced the most accurate predictions in every scenario for the milk protein trait, and in some scenarios for fertility. CONCLUSIONS: The haploblock approach to genomic prediction is a promising method for genomic selection in animal breeding. Building haploblocks based on LD reduced the number of variables without the loss of information. This method may play an important role in the future genomic prediction involving while genome sequences.


Subject(s)
Genetics, Population , Genomics , Haplotypes , Linkage Disequilibrium , Models, Genetic , Quantitative Trait Loci , Quantitative Trait, Heritable , Algorithms , Animals , Cattle , Genomics/methods , Models, Statistical , Phenotype , Polymorphism, Single Nucleotide , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...