Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Regen Med ; 8(1): 60, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872196

ABSTRACT

Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.

2.
Front Bioeng Biotechnol ; 11: 1190371, 2023.
Article in English | MEDLINE | ID: mdl-37284244

ABSTRACT

Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (ß-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with ß-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the ß-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble ß-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of ß-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble ß-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that ß-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein ß-NGF can be encapsulated within PEGDMA microrods for local delivery and that ß-NGF bioactivity is maintained resulting in improved bone fracture repair.

3.
Mol Pharm ; 20(2): 810-828, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36652561

ABSTRACT

Calcium phosphate (CaP)-based materials have been extensively used for mineralized tissues in the craniofacial complex. Owing to their excellent biocompatibility, biodegradability, and inherent osteoconductive nature, their use as delivery systems for drugs and bioactive factors has several advantages. Of the three mineralized tissues in the craniofacial complex (bone, dentin, and enamel), only bone and dentin have some regenerative properties that can diminish due to disease and severe injuries. Therefore, targeting these regenerative tissues with CaP delivery systems carrying relevant drugs, morphogenic factors, and ions is imperative to improve tissue health in the mineralized tissue engineering field. In this review, the use of CaP-based microparticles, nanoparticles, and polymer-induced liquid precursor (PILPs) amorphous CaP nanodroplets for delivery to craniofacial bone and dentin are discussed. The use of these various form factors to obtain either a high local concentration of cargo at the macroscale and/or to deliver cargos precisely to nanoscale structures is also described. Finally, perspectives on the field using these CaP materials and next steps for the future delivery to the craniofacial complex are presented.


Subject(s)
Biomineralization , Collagen , Collagen/chemistry , Bone and Bones , Tissue Engineering , Calcium Phosphates/chemistry
4.
Article in English | MEDLINE | ID: mdl-35529078

ABSTRACT

Tissue engineering strategies, notably biomaterials, can be modularly designed and tuned to match specific patient needs. Although many challenges within tissue engineering remain, the incorporation of diagnostic strategies to create theranostic (combined therapy and diagnostic) biomaterials presents a unique platform to provide dual monitoring and treatment capabilities and advance the field toward personalized technologies. In this review, we summarize recent developments in this young field of regenerative theranostics and discuss the clinical potential and outlook of these systems from a tissue engineering perspective. As the need for precision and personalized medicines continues to increase to address diseases in all tissues in a patient-specific manner, we envision that such theranostic platforms can serve these needs.

5.
Biointerphases ; 13(6): 06D406, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30231617

ABSTRACT

Poly(N-isopropyl acrylamide) (pNIPAM) is a stimulus-responsive polymer that has been of great interest to the bioengineering community. When the temperature is lowered below its lower critical solution temperature (∼32 °C), pNIPAM rapidly hydrates, and adherent cells detach as intact cell sheets. This cell-releasing behavior in a physiologically relevant temperature range has led to NIPAM's use for engineered tissues and other devices. In a previous study, however, the authors found that although most techniques used to polymerize NIPAM yield biocompatible films, some formulations from commercially-available NIPAM (cpNIPAM) can be cytotoxic. In this work, the authors investigate the reasons underlying this anomaly. The authors evaluated the response of a variety of cell types (e.g., bovine aortic endothelial cells, BAECs; monkey kidney epithelial cells, Vero cells; and mouse embryonic fibroblasts, 3T3s) after culture on substrates spin-coated with sol-gel (spNIPAM) and commercially-prepared (cpNIPAM). The relative biocompatibility of each cell type was evaluated using observations of its cell morphology and function (e.g., XTT and Live/Dead assays) after 48 and 96 h in culture. In addition, the substrates themselves were analyzed using NMR, goniometry, and XPS. The authors find that all the cell types were compromised by 96 h in culture with cpNIPAM, although the manner in which the cells are compromised differs; in particular, while Vero and 3T3 cells appear to be undergoing cytotoxic death, BAECs undergo apoptic death. The authors believe that this result is due to a combination of factors, including the presence of short chain oligomers of NIPAM in the commercially-available preparation. This work will provide valuable insights into the cytotoxicity of commercially-prepared polymer substrates for this type of bioengineering work and therefore into the applicability of cells grown on such surfaces for human subjects.


Subject(s)
Acrylic Resins/toxicity , Endothelial Cells/drug effects , Epithelial Cells/drug effects , Fibroblasts/drug effects , Acrylic Resins/chemistry , Animals , Cattle , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Endothelial Cells/physiology , Epithelial Cells/physiology , Fibroblasts/physiology , Humans , Magnetic Resonance Spectroscopy , Mice , Photoelectron Spectroscopy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...