Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 30(8): 2047-53, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24520857

ABSTRACT

In this paper, we show the electrochemical deposition of a subnanometer film of nickel (Ni) on top of titanium nitride (TiN). We exploit the concept of cluster growth inhibition to enhance the nucleation of new nuclei on the TiN substrate. By deliberately using an unbuffered electrolyte solution, the degree of nucleation is enhanced as growth is inhibited more strongly. This results in a very high particle density and therefore an ultralow coalescence thickness. To prevent the termination of Ni deposition that typically occurs in unbuffered solutions, the concentration of Ni(2+) in solution was increased. We have verified with RBS and ICP-MS that the deposition of Ni on the surface in this case did not terminate. Furthermore, annealing experiments were used to visualize the closed nature of the Ni film. The closure of the deposited film was also confirmed by TOF-SIMS measurements and occurs when the film thickness is still in the subnanometer regime. The ultrathin Ni film was found to be an excellent catalyst for carbon nanotube growth on conductive substrates and can also be applied as a seed layer for bulk deposition of a smooth Ni film on TiN.

2.
Dalton Trans ; 42(4): 959-68, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23108392

ABSTRACT

An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...