Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 142: 160-166, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316130

ABSTRACT

The correct description of neutron transport in lead is an essential task for correct description of tritium production in the DEMO (DEMOnstration Power Station) breeding blanket because some concepts deal with lead as a major component: namely the WCLL (water cooled lithium lead blanket), HCLL (helium cooled lithium lead blanket), and DCLL (dual cooled lithium lead blanket). Concerning the improvement of the knowledge about the transport of fast neutrons in lead, a set of experiments and calculations was carried out to study this problem with a well-defined neutron beam. The neutron flux behind various lead arrangements positioned along the beam axis was measured using a stilbene scintillation crystal (10 mm × 10 mm) with neutron and gamma pulse shape discrimination. The measurement was performed along the beam axis and in the case of the thick target also above the axis, to estimate the neutron angular scatter in lead. The calculations were realized using MCNP6 with various nuclear data libraries. Discrepancies in the angular distribution description in the energy region of about 1 MeV were discovered by these experiments.

2.
Appl Radiat Isot ; 142: 12-21, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245437

ABSTRACT

The neutron flux distribution behind a reactor pressure vessel (RPV) is an important parameter that is monitored to determine neutron fluence in the RPV. Together with mechanical testing of surveillance specimens, these are the most important parts of in-service inspection programs that are essential for a realistic and reliable assessment of the RPV residual lifetime. The fast neutron fluence values are determined by a calculation. These calculation results are accompanied by measurements of induced activities of the activation foils placed in the capsules behind the RPV at selected locations, namely in azimuthal profile. In case of discrepancies between the measured and calculated activities of the activation foils placed behind the pressure vessel, it is difficult to determine the source of the deviation. During such analysis, there arises a question on the influence of power peaking near core boundary on neutron profile behind the RPV. This paper compares the calculated and measured increase of the neutron flux density distribution behind the reactor pressure vessel in the azimuthal profile that has arisen from the replacement of 164 fuel pins located close to reactor internals by pins with the higher enrichment. This work can be understood as the first step in the characterization of the effect of incorrectly calculated pin power or burn-up in the fuel assembly at the core boundary relative to the neutron flux distribution behind reactor pressure vessel. Based on a good agreement between the calculated and experimental values, it can be concluded that the mathematical model used to evaluate the power increase is correct.

3.
Appl Radiat Isot ; 135: 83-91, 2018 May.
Article in English | MEDLINE | ID: mdl-29413841

ABSTRACT

A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra.

4.
Appl Radiat Isot ; 128: 41-48, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28686886

ABSTRACT

A well-defined neutron spectrum is an essential tool for calibration and tests of spectrometry and dosimetry detectors, and evaluation methods for spectra processing. Many of the nowadays used neutron standards are calibrated against a fission spectrum which has a rather smooth energy dependence. In recent time, at the LVR-15 research reactor in Rez, an alternative approach was tested for the needs of fast neutron spectrometry detector calibration. This process comprises detector tests in a neutron beam, filtered by one meter of single-crystalline silicon, which contains several significant peaks in the fast neutron energy range. Tests in such neutron field can possibly reveal specific problems in the deconvolution matrix of the detection system, which may stay hidden in fields with a smooth structure and can provide a tool for a proper energy calibration. Test with several stilbene scintillator crystals in two different beam configurations supplemented by Monte-Carlo transport calculations have been carried out. The results have shown a high level of agreement between the experimental data and simulation, proving thus the accuracy of used deconvolution matrix. The chosen approach can, thus, provide a well-defined neutron reference field with a peaked structure for further tests of spectra evaluation methods and scintillation detector energy calibration.

5.
Appl Radiat Isot ; 120: 45-50, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27907883

ABSTRACT

A well-defined neutron spectrum is essential for many types of experimental topics and is also important for both calibration and testing of spectrometric and dosimetric detectors. Provided it is well described, such a spectrum can also be employed as a reference neutron field that is suitable for validating selected cross sections. The present paper aims to compare calculations and measurements of such a well-defined spectra in geometrically similar cores of the LR-0 reactor with fuel containing slightly different enrichments (2%, 3.3% and 3.6%). The common feature to all cores is a centrally located dry channel which can be used for the insertion of studied materials. The calculation of neutron and gamma spectra was realized with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Only minor differences in neutron and gamma spectra were found in the comparison of the presented reactor cores with different fuel enrichments. One exception is the gamma spectrum in the higher energy region (above 8MeV), where more pronounced variations could be observed.

6.
J Radioanal Nucl Chem ; 303(1): 583-599, 2015.
Article in English | MEDLINE | ID: mdl-26224980

ABSTRACT

Several new methods for the digital discrimination of neutrons and gamma-rays in a mixed radiation field are presented. The methods introduced discriminate neutrons and gamma rays successfully in the digital domain. They are mathematically simple and exploit samples during the life time of the pulse, hence appropriate for field measurements. All these methods are applied to a set of mixed neutron and photon signals from a stilbene scintillator and their discrimination qualities are compared.

7.
Appl Radiat Isot ; 82: 193-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24050946

ABSTRACT

Even low power reactors, such as zero power reactors, are sufficient for semiconductor radiation hardness effect investigation. This reflects the fact that fluxes necessary for affecting semiconductor electrical resistance are much lower than fluxes necessary to affect material parameters. The paper aims to describe the irradiation possibilities of the LR-0 reactor with a special core arrangement corresponding to VVER-1000 dosimetry Mock-Up.

8.
Appl Radiat Isot ; 75: 37-43, 2013 May.
Article in English | MEDLINE | ID: mdl-23434890

ABSTRACT

The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.


Subject(s)
Fast Neutrons , Nuclear Reactors , Photons , Radiation Protection , Computer Simulation , Gamma Rays , Models, Theoretical , Monte Carlo Method , Neutrons
SELECTION OF CITATIONS
SEARCH DETAIL
...