Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 146(12): 124117, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388118

ABSTRACT

Electrostatic interactions play a critical role in determining the properties, structures, and dynamics of chemical, biochemical, and material systems. These interactions are described well at the level of quantum mechanics (QM) but not so well for the various models used in force field simulations of these systems. We propose and validate a new general methodology, denoted PQEq, to predict rapidly and dynamically the atomic charges and polarization underlying the electrostatic interactions. Here the polarization is described using an atomic sized Gaussian shaped electron density that can polarize away from the core in response to internal and external electric fields, while at the same time adjusting the charge on each core (described as a Gaussian function) so as to achieve a constant chemical potential across all atoms of the system. The parameters for PQEq are derived from experimental atomic properties of all elements up to Nobelium (atomic no. = 102). We validate PQEq by comparing to QM interaction energy as probe dipoles are brought along various directions up to 30 molecules containing H, C, N, O, F, Si, P, S, and Cl atoms. We find that PQEq predicts interaction energies in excellent agreement with QM, much better than other common charge models such as obtained from QM using Mulliken or ESP charges and those from standard force fields (OPLS and AMBER). Since PQEq increases the accuracy of electrostatic interactions and the response to external electric fields, we expect that PQEq will be useful for a large range of applications including ligand docking to proteins, catalytic reactions, electrocatalysis, ferroelectrics, and growth of ceramics and films, where it could be incorporated into standard force fields as OPLS, AMBER, CHARMM, Dreiding, ReaxFF, and UFF.

2.
PLoS Comput Biol ; 12(3): e1004805, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27028541

ABSTRACT

The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms.


Subject(s)
Amino Acid Sequence , Computational Biology/methods , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Algorithms , Databases, Protein , Humans , Models, Molecular , Phylogeny , Receptors, G-Protein-Coupled/metabolism
3.
Phys Rev Lett ; 105(17): 176807, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231071

ABSTRACT

A modest in-plane magnetic field B(∥) is sufficient to destroy the fractional quantized Hall states at ν = 5/2 and 7/2 and replace them with anisotropic compressible phases. Remarkably, we find that at larger B(∥) these anisotropic phases can themselves be replaced by isotropic compressible phases reminiscent of the composite fermion fluid at ν = 1/2. We present strong evidence that this transition is a consequence of the mixing of Landau levels from different electric subbands. We also report surprising dependences of the energy gaps at ν = 5/2 and 7/3 on the width of the confinement potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...