Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Saudi Pharm J ; 32(6): 102090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766273

ABSTRACT

In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Bozurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675478

ABSTRACT

Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol-water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies.

3.
J Chromatogr A ; 1703: 464082, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37269574

ABSTRACT

High-Performance Thin-Layer Chromatography (HPTLC)-radical scavenging capacity (RSC) assays are standard techniques for the separation and identification of antioxidants from complex mixtures. HPTLC coupled with DPPH· visualization of chromatograms allows for the detection of individual antioxidants. However, other HPTLC-RSC assays that recognize compounds exhibiting different mechanisms of radical-scavenging activity are rarely reported. In this study, we developed an integrated approach that combines five HPTLC-RSC assays, principal component analysis (PCA) and quantum chemical calculations to assess the antioxidant capacity of Sempervivum tectorum L. leaf extracts. Two HPTLC assays - potassium hexacyanoferrate(III) total reducing power assay (TRP) and total antioxidant capacity by phosphomolybdenum method (TAC) - were developed for the first time. The method supports a more in-depth study of the RSC of natural products, as it compares the radical scavenging fingerprints of S. tectorum leaf extracts and recognizes differences in their individual bioactive constituents. Kaempferol, kaempferol 3-O-glucoside, quercetin 3-O-glucoside, caffeic acid, and gallic acid were identified as the compounds that discriminate HPTLC-RSC assays according to their mechanism of action and capture the similarities between 20 S. tectorum samples. Additionally, DFT calculations on M06-2X/6-31+G(d,p) level were applied to map thermodynamic feasibility of hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms of the identified compounds. Based on experimental and theoretical results, a combination of HPTLC-ABTS and HPTLC-TAC assays were proposed as the optimal method for mapping the antioxidants from S. tectorum. This study represents a step forward in identifying and quantifying individual antioxidants from complex food and natural product matrices in a more rational manner.


Subject(s)
Antioxidants , Crassulaceae , Antioxidants/chemistry , Kaempferols , Chromatography, Thin Layer/methods , Plant Extracts/chemistry , Chemometrics
4.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240267

ABSTRACT

Packed with hemoglobin, an essential protein for oxygen transport, human erythrocytes are a suitable model system for testing the pleiotropic effects of lipophilic drugs. Our study investigated the interaction between antipsychotic drugs clozapine, ziprasidone, sertindole, and human hemoglobin under simulated physiological conditions. Analysis of protein fluorescence quenching at different temperatures and data obtained from the van't Hoff diagram and molecular docking indicate that the interactions are static and that the tetrameric human hemoglobin has one binding site for all drugs in the central cavity near αß interfaces and is dominantly mediated through hydrophobic forces. The association constants were lower-moderate strength (~104 M-1), the highest observed for clozapine (2.2 × 104 M-1 at 25 °C). The clozapine binding showed "friendly" effects: increased α-helical content, a higher melting point, and protein protection from free radical-mediated oxidation. On the other hand, bound ziprasidone and sertindole had a slightly pro-oxidative effect, increasing ferrihemoglobin content, a possible "foe". Since the interaction of proteins with drugs plays a vital role in their pharmacokinetic and pharmacodynamic properties, the physiological significance of the obtained findings is briefly discussed.


Subject(s)
Antipsychotic Agents , Clozapine , Humans , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Molecular Docking Simulation , Olanzapine , Benzodiazepines
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986441

ABSTRACT

Phenotypic screening of α-substituted thiocarbohydrazones revealed promising activity of 1,5-bis(salicylidene)thiocarbohydrazide against leukemia and breast cancer cells. Supplementary cell-based studies indicated an impairment of DNA replication via the ROS-independent pathway. The structural similarity of α-substituted thiocarbohydrazone to previously published thiosemicarbazone catalytic inhibitors targeting the ATP-binding site of human DNA topoisomerase IIα prompted us to investigate the inhibition activity on this target. Thiocarbohydrazone acted as a catalytic inhibitor and did not intercalate the DNA molecule, which validated their engagement with this cancer target. A comprehensive computational assessment of molecular recognition for a selected thiosemicarbazone and thiocarbohydrazone provided useful information for further optimization of this discovered lead compound for chemotherapeutic anticancer drug discovery.

6.
J Environ Manage ; 326(Pt B): 116838, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435138

ABSTRACT

Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 µm diameters, 69.4 m2 g-1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g-1 for MG, 86.8 mg g-1 for T, and 68.6 mg g-1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Microspheres , Lignin , Water Pollutants, Chemical/chemistry , Kinetics , Cations/chemistry , Models, Theoretical
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203400

ABSTRACT

Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M-1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αß)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry.


Subject(s)
Protein C , Spirulina , Animals , Ubiquinone , Antioxidants/pharmacology , Phycocyanin , Molecular Docking Simulation , Quercetin , Resveratrol/pharmacology , Food Additives , Decapodiformes , Dietary Supplements
8.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144791

ABSTRACT

Strawberries are an important fruit in the European diet because of their unique taste and high content of essential nutrients and bioactive compounds. The anthocyanins are known to be colorful phenolics in strawberries. In 17 samples of six strawberry cultivars produced in Serbia, i.e., the common varieties Alba, Asia, and Clery as well as promising breeding materials (11.29.11, 11.34.6, and 11.39.3), the anthocyanin profile as well as antimicrobial and antioxidative activity profiles were determined. All investigated extracts showed antioxidative and antibacterial activities against Gram-negative Aliivibrio fischeri. The responses were quite similar in number and intensity. The HPTLC-DPPH• scavenging assay and HPTLC-Aliivibrio fischeri bioassay coupled with high-resolution mass spectrometry identified pelargonidin-3-O-glucoside (Pg-3-glc) as the main anthocyanin and prominent antioxidative and antimicrobial compound in strawberries. The density functional theory calculations at the M06-2X/6-31+G(d,p) level showed that Pg-3-glc quenches free radicals via sequential proton loss electron transfer mechanism in water and in pentyl ethanoate, where the 5-OH group is the most reactive site for proton and hydrogen atom transfer. The results were confirmed via spectrophotometry. The highest total phenolic content was found in Clery and 11.39.3, while statistically significant differences between the genotypes regarding the antioxidant activity were not confirmed. Although very similar in the anthocyanin, antioxidative, and antimicrobial profile patterns, the strawberry genotypes were successfully classified using principal component analysis.


Subject(s)
Antipsychotic Agents , Fragaria , Anthocyanins/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Chemometrics , Chromatography , Fragaria/chemistry , Fruit/chemistry , Glucosides/analysis , Phenols/analysis , Plant Breeding , Protons , Water/analysis
9.
Plants (Basel) ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145749

ABSTRACT

To replace common organic solvents that present inherent toxicity and have high volatility and to improve the extraction efficiency, a range of natural deep eutectic solvents (NADESs) were evaluated for the extraction of phenolic compounds from Agrimonia eupatoria. Screening of NADES efficiency was carried out based on the total phenolic and flavonoid content and radical-scavenging activity, determined by spectrophotometry, as well as phenolic compounds quantified, obtained using ultra-high-performance liquid chromatography with a diode array detector and a triple-quadrupole mass spectrometer. Increased extraction efficiency when compared with organic solvent was achieved using NADES mixtures choline chloride (ChCl):urea 1:2 and choline chloride:glycerol 1:1. Flavonol glycosides were the most abundant compounds in all extracts. The COSMO-RS model provided insights into the most important intermolecular interactions that drive the extraction process. Moreover, it could explain the extraction efficiency of flavonol glycosides using ChCl:glycerol NADES. The current article offers experimental evidence and mechanistic insights for the selection of optimal NADES to extract bioactive components from Agrimonia eupatoria.

10.
J Biomol Struct Dyn ; 40(4): 1671-1691, 2022 03.
Article in English | MEDLINE | ID: mdl-33047663

ABSTRACT

Recently, we designed and synthesized a subnanomolar, reversible, dual-binding site acetylcholinesterase (AChE) inhibitor which consists of the tacrine and aroylacrylic acid phenylamide moieties, mutually linked by eight methylene units. To further investigate the process of the molecular recognition between the AChE and its inhibitor, we performed six unconstrained molecular dynamics (MD) simulations, where the compound in three possible protonation states was placed inside binding sites of two available AChE crystal structures. In all six MD trajectories, the ligand generally occupied similar space inside the AChE active site, but the pattern of the interactions between the ligand functional groups and the amino acid residues was significantly different and highly dependent upon the crystal structure used to generate initial systems for simulation. The greatest differences were observed between the trajectories obtained with different AChE crystal structures used as starting target conformations. In some trajectories, several unusual positions and dynamic behavior of the tacrine moiety were observed. Therefore, this study provides important structure-based data useful in further optimization of the reversible, dual binding AChE inhibitors, and also emphasizes the importance of the starting crystal structure used for dynamics as well as the protonation state of the reversible inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Tacrine , Acetylcholinesterase/chemistry , Binding Sites , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Tacrine/chemistry
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119576, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33631625

ABSTRACT

Electronic interactions in donor-π-linker-acceptor systems with barbituric acid as an electron acceptor and possible electron donor were investigated to screen promising candidates with a push-pull character based on experimental and quantum chemical studies. The tautomeric properties of 5-benzylidenebarbituric acid derivatives were studied with NMR spectra, spectrophotometric determination of the pKa values, and quantum chemical calculations. Linear solvation energy relationships (LSER) and linear free energy relationships (LFER) were applied to the spectral data - UV frequencies and 13C NMR chemical shifts. The experimental studies of the nature of the ground and excited state of investigated compounds were successfully interpreted using a computational chemistry approach including ab initio MP2 geometry optimization and time-dependent DFT calculations of excited states. Quantification of the push-pull character of barbituric acid derivatives was performed by the 13CNMR chemical shift differences, Mayer π bond order analysis, hole-electron distribution analysis, and calculations of intramolecular charge transfer (ICT) indices. The results obtained show, that when coupled with a strong electron-donor, barbituric acid can act as the electron-acceptor in push-pull systems, and when coupled with a strong electron-acceptor, barbituric acid can act as the weak electron-donor.

12.
Bioorg Chem ; 102: 104073, 2020 09.
Article in English | MEDLINE | ID: mdl-32693308

ABSTRACT

In this study we synthesized a series of sixteen bis(imino)pyridines (BIPs) starting from 2,6-diaminopyridine and various aromatic aldehydes, and evaluated their antioxidant, antibacterial, antifungal and acetylcholinesterase (AChE) inhibitory activity. The chemical structures were elucidated by FTIR, elemental analysis, ESR and HRMS. 1H and 13C NMR spectra couldn't be acquired due to the formation of stable, carbon-centered radical cations in a solution, as confirmed by ESR spectroscopy and DFT calculations. The in vitro antioxidant potency was evaluated using four assays: free radical scavenging activity (DPPH and ABTS), reducing power and total antioxidant capacity assay. BIPs demonstrated excellent antioxidant properties, and two derivatives proved to be more potent than reference antioxidants (ascorbic acid and Trolox) in all assays. DFT calculations on ωB97XD/6-311++g(d,p) level of theory provided valuable insights into the radical scavenging mechanism of BIPs. For hydroxyl-substituted BIPs, hydrogen atom transfer (HAT) is a predominant mechanism, while the single electron transfer coupled with proton transfer (SET-PT) governs the antioxidant activity of other derivatives. Intramolecular hydrogen bonding (IHB) plays an important role in the mechanism of antioxidant activity as revealed by noncovalent interaction analysis and rotational barrier calculations. The spin density of radical cations is localized on carbon atoms of a pyridine ring, which corroborates with g-factors and multiplicity obtained from ESR analysis. The most potent BIP exhibited moderate inhibitory activity toward AChE (IC50 = 20 ± 4 µM), while molecular docking suggested binding at the peripheral anionic site of AChE with the MMFF94 binding enthalpy of -43.4 kcal/mol. Moderate in vitro antimicrobial activity of BIPs have been determined against several pathogenic bacterial strains: Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and clinical isolate of methicillin resistant S. aureus (MRSA). The antifungal activity of BIPs toward Candida albicans was also confirmed. The similarity ensemble approach combined with molecular docking suggested leucyl aminopeptidase as the probable antimicrobial target for the three most potent BIP derivatives.


Subject(s)
Anti-Infective Agents/therapeutic use , Antifungal Agents/therapeutic use , Antioxidants/therapeutic use , Cholinesterase Inhibitors/therapeutic use , Electron Spin Resonance Spectroscopy/methods , Pyridines/chemical synthesis , Pyridines/therapeutic use , Candida albicans , Humans , Pyridines/pharmacology , Structure-Activity Relationship
13.
Chem Biol Interact ; 309: 108714, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31228470

ABSTRACT

Acetylcholinesterase (AChE) is an enzyme which terminates the cholinergic neurotransmission, by hydrolyzing acetylcholine at the nerve and nerve-muscle junctions. The reversible inhibition of AChE was suggested as the pre-treatment option of the intoxications caused by nerve agents. Based on our derived 3D-QSAR model for the reversible AChE inhibitors, we designed and synthesized three novel compounds 8-10, joining the tacrine and aroylacrylic acid phenylamide moieties, with a longer methylene chain to target two distinct, toplogically separated anionic areas on the AChE. The targeted compounds exerted low nanomolar to subnanomolar potency toward the E. eel and human AChE's as well as the human BChE and showed mixed inhibition type in kinetic studies. All compounds were able to slow down the irreversible inhibition of the human AChE by several nerve agents including tabun, soman and VX, with the estimated protective indices around 5, indicating a valuable level of protection. Putative noncovalent interactions of the selected ligand 10 with AChE active site gorge were finally explored by molecular dynamics simulation suggesting a formation of the salt bridge between the protonated linker amino group and the negatively charged Asp74 carboxylate side chain as a significant player for the successful molecular recognition in line with the design strategy. The designed compounds may represent a new class of promising leads for the development of more effective pre-treatment options.


Subject(s)
Chemical Warfare Agents/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Protective Agents/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Binding Sites , Catalytic Domain , Chemical Warfare Agents/metabolism , Cholinesterase Inhibitors/metabolism , Cholinesterases/chemistry , Humans , Kinetics , Molecular Dynamics Simulation , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Protective Agents/metabolism , Quantitative Structure-Activity Relationship , Soman/chemistry , Soman/metabolism
14.
J Inorg Biochem ; 190: 45-66, 2019 01.
Article in English | MEDLINE | ID: mdl-30352315

ABSTRACT

A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 µM induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.


Subject(s)
Cadmium/chemistry , Coordination Complexes/pharmacology , Hydrazones/chemistry , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Molecular Structure
15.
Article in English | MEDLINE | ID: mdl-29428893

ABSTRACT

The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Isatin/chemistry , Isatin/pharmacology , Bacteria/drug effects , Isomerism , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Quantitative Structure-Activity Relationship , Schiff Bases , Solvents , Spectrophotometry, Ultraviolet , Thermodynamics
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 128-139, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29128746

ABSTRACT

Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37°C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.


Subject(s)
Antimalarials/metabolism , Serum Albumin, Human/metabolism , Antimalarials/pharmacology , Binding Sites , Crystallography, X-Ray , Humans , Kinetics , Ligands , Molecular Docking Simulation , Plasmodium/drug effects , Protein Binding , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Thermodynamics
17.
Eur J Med Chem ; 143: 1474-1488, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29133041

ABSTRACT

Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Design , Drug Resistance, Multiple/drug effects , Keto Acids/chemical synthesis , Keto Acids/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacteria/enzymology , Catalytic Domain , Chemistry Techniques, Synthetic , Humans , Hydrophobic and Hydrophilic Interactions , Keto Acids/chemistry , Keto Acids/metabolism , Molecular Docking Simulation , Serum Albumin, Human/metabolism , Structure-Activity Relationship
18.
Bioorg Med Chem ; 23(15): 4649-4659, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26088336

ABSTRACT

Inhibitory activity of a congeneric set of 23 phenyl-substituted 5-phenyl-pyrazole-3-carboxylic acids toward human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms I, II, IX and XII was evaluated by a stopped-flow CO2 hydrase assay. These compounds exerted a clear, selective inhibition of hCA IX and XII over hCAI and II, with Ki in two to one digit micromolar concentrations (4-50 µM). Derivatives bearing bulkier substituents in para-position of the phenyl ring inhibited hCA XII at one-digit micromolar concentrations, while derivatives having alkyl substituents in both ortho- and meta-positions inhibited hCA IX with Kis ranging between 5 and 25 µM. Results of docking experiments offered a rational explanation on the selectivity of these compounds toward CA IX and XII, as well as on the substitution patterns leading to best CA IX or CA XII inhibitors. By examining the active sites of these four isoforms with GRID generated molecular-interaction fields, striking differences between hCA XII and the other three isoforms were observed. The field of hydrophobic probe (DRY) appeared significantly different in CA XII active site, comparing to other three isoforms studied. To the best of our knowledge such an observation was not reported in literature so far. Considering the selectivity of these carboxylates towards membrane-associated over cytosolic CA isoforms, the title compounds could be useful for the development of isoform-specific non-sulfonamide CA inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Humans , Structure-Activity Relationship
19.
J Mol Graph Model ; 38: 194-210, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23073222

ABSTRACT

The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Protons , Small Molecule Libraries/chemistry , Animals , Binding Sites , Electrophorus , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Nitrogen/chemistry , Predictive Value of Tests , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantitative Structure-Activity Relationship , Species Specificity , Tacrine/chemistry , Thermodynamics
20.
Eur J Med Chem ; 45(10): 4570-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20705369

ABSTRACT

An alignment-free 3D QSAR study on antiproliferative activity of the thirty-three 1,2,4,5-tetraoxane derivatives toward two human dedifferentiated cell lines was reported. GRIND methodology, where descriptors are derived from GRID molecular interaction fields (MIF), were used. It was found that pharmacophoric pattern attributed to the most potent derivatives include amido NH of the primary or secondary amide, and the acetoxy fragments at positions 7 and 12 of steroid core which are, along with the tetraoxane ring, common for all studied compounds. Independently, simple multiple regression model obtained by using the whole-molecular properties, confirmed that the hydrophobicity and the H-bond donor properties are the main parameters influencing potency of compounds toward human cervix carcinoma (HeLa) and human malignant melanoma (FemX) cell lines. Corollary, similar structural motifs are found to be important for the potency toward both examined cell lines.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Tetraoxanes/chemistry , Tetraoxanes/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Carcinoma/drug therapy , Cell Line, Tumor , Female , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Melanoma/drug therapy , Models, Biological , Models, Molecular , Quantitative Structure-Activity Relationship , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...