Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 1991, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222409

ABSTRACT

Emerging multidrug-resistant bacteria are a challenge for modern medicine, but how these pathogens are so successful is not fully understood. Robust antibacterial vaccines have prevented and reduced resistance suggesting a pivotal role for immunity in deterring antibiotic resistance. Here, we show the increased prevalence of Klebsiella pneumoniae lipopolysaccharide O2 serotype strains in all major drug resistance groups correlating with a paucity of anti-O2 antibodies in human B cell repertoires. We identify human monoclonal antibodies to O-antigens that are highly protective in mouse models of infection, even against heavily encapsulated strains. These antibodies, including a rare anti-O2 specific antibody, synergistically protect against drug-resistant strains in adjunctive therapy with meropenem, a standard-of-care antibiotic, confirming the importance of immune assistance in antibiotic therapy. These findings support an antibody-based immunotherapeutic strategy even for highly resistant K. pneumoniae infections, and underscore the effect humoral immunity has on evolving drug resistance.


Subject(s)
Antibodies, Bacterial/therapeutic use , Antibodies, Monoclonal/therapeutic use , Klebsiella Infections/therapy , Klebsiella pneumoniae/physiology , O Antigens/immunology , Animals , Anti-Bacterial Agents/therapeutic use , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Cell Line , Disease Models, Animal , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/immunology , Humans , Immunity, Humoral , Immunologic Factors/therapeutic use , Immunotherapy/methods , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella Infections/mortality , Klebsiella pneumoniae/drug effects , Meropenem , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Serogroup , Survival Rate , Thienamycins/therapeutic use
2.
JCI Insight ; 2(9)2017 May 04.
Article in English | MEDLINE | ID: mdl-28469079

ABSTRACT

Initial promising results with immune sera guided early human mAb approaches against Gram-negative sepsis to an LPS neutralization mechanism, but these efforts failed in human clinical trials. Emergence of multidrug resistance has renewed interest in pathogen-specific mAbs. We utilized a pair of antibodies targeting Klebsiella pneumoniae LPS, one that both neutralizes LPS/TLR4 signaling and mediates opsonophagocytic killing (OPK) (54H7) and one that only promotes OPK (KPE33), to better understand the contribution of each mechanism to mAb protection in an acutely lethal pneumonia model. Passive immunization 24 hours prior to infection with KPE33 protected against lethal infection significantly better than 54H7, while delivery of either mAb 1 hour after infection resulted in similar levels of protection. These data suggest that early neutralization of LPS-induced signaling limits protection afforded by these mAbs. LPS neutralization prevented increases in the numbers of γδT cells, a major producer of the antimicrobial cytokine IL-17A, the contribution of which was confirmed using il17a-knockout mice. We conclude that targeting LPS for OPK without LPS signaling neutralization has potential to combat Gram-negative infection by engaging host immune defenses, rather than inhibiting beneficial innate immune pathways.

3.
MAbs ; 9(3): 393-403, 2017 04.
Article in English | MEDLINE | ID: mdl-28102754

ABSTRACT

Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe. The outcome of any Fc engineering depends on the interplay among all the effector molecules involved. In this report, we assessed the effects of Fc multiplication (or tandem Fc) on antibody functions. Using IgG1 as a test case, we found that, depending on the specifically designed linker, Fc multiplication led to differentially folded, stable molecules with unique pharmacokinetic profiles. Interestingly, the variants with 3 copies of Fc improved in vitro opsonophagocytic killing activity and displayed significantly improved protective efficacies in a Klebsiella pneumoniae mouse therapeutic model despite faster clearance compared with its IgG1 counterpart. There was no adverse effect observed or pro-inflammatory cytokine release when the Fc variants were administered to animals. We further elucidated that enhanced binding to various effector molecules by IgG-3Fc created a "sink" leading to the rapid clearance of the 3Fc variants, and identified the increased FcRn binding as one strategy to facilitate "sink" escape. These findings reveal new opportunities for novel Fc engineering to further expand our abilities to manipulate and improve antibody therapeutics.


Subject(s)
Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Protein Engineering/methods , Animals , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/chemistry , Immunoglobulin G/pharmacology , Klebsiella Infections/immunology , Klebsiella pneumoniae , Mice , Mice, Inbred C57BL
4.
PLoS One ; 12(1): e0170529, 2017.
Article in English | MEDLINE | ID: mdl-28107434

ABSTRACT

Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage display and hybridoma platforms all recognize an overlapping epitope, which opens up important questions including whether monoclonal antibodies targeting different MrkA epitopes can be generated and if they possess different protective profiles. In this study we generated four anti-MrkA antibodies targeting different epitopes through phage library panning against recombinant MrkA protein. These anti-MrkA antibodies elicited strong in vitro and in vivo protections against a multi-drug resistant Klebsiella pneumoniae strain. Furthermore, mutational and epitope analysis suggest that the two cysteine residues may play essential roles in maintaining a MrkA structure that is highly compacted and exposes limited antibody binding/neutralizing epitopes. These results suggest the need for further in-depth understandings of the structure of MrkA, the role of MrkA in the pathogenesis of Klebsiella pneumoniae and the protective mechanism adopted by anti-MrkA antibodies to fully explore the potential of MrkA as an efficient therapeutic target and vaccine antigen.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Klebsiella pneumoniae/immunology , Animals , Drug Resistance, Multiple, Bacterial/immunology , Epitopes/immunology , Flow Cytometry , Interferometry , Klebsiella Infections/immunology , Mice , Mice, Inbred C57BL , Recombinant Proteins
5.
J Infect Dis ; 213(11): 1800-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26768253

ABSTRACT

The increasing incidence of Klebsiella pneumoniae infections refractory to treatment with current broad-spectrum antibiotic classes warrants the exploration of alternative approaches, such as antibody therapy and/or vaccines, for prevention and treatment. However, the lack of validated targets shared by spectrums of clinical strains poses a significant challenge. We adopted a target-agnostic approach to identify protective antibodies against K. pneumoniae Several monoclonal antibodies were isolated from phage display and hybridoma platforms by functional screening for opsonophagocytic killing activity. We further identified their common target antigen to be MrkA, a major protein in the type III fimbriae complex, and showed that these serotype-independent anti-MrkA antibodies reduced biofilm formation in vitro and conferred protection in multiple murine pneumonia models. Importantly, mice immunized with purified MrkA proteins also showed reduced bacterial burden following K. pneumoniae challenge. Taken together, these results support MrkA as a promising target for K. pneumoniae antibody therapeutics and vaccines.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Fimbriae Proteins/immunology , Klebsiella pneumoniae/immunology , Animals , Antibody Specificity , Bacterial Vaccines/immunology , Biofilms , Cytotoxicity, Immunologic , Humans , Hybridomas , Klebsiella Infections/prevention & control , Mice , Mice, Inbred C57BL , Peptide Library , Phagocytosis , Respiratory Mucosa/microbiology
6.
Biol Blood Marrow Transplant ; 13(9): 1022-30, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17697964

ABSTRACT

Mixed chimerism in the T cell compartment (MCT) after reduced-intensity stem cell transplantation (RIST) may influence immune repopulation with alloreactive donor T cells. We examined effects of host T cell numbers on donor T cell engraftment and recovery and on acute graft-versus-host disease (aGVHD) in a relatively homogeneous patient population with respect to residual host T cells through quantified immune depletion prior to RIST and to donor T cells by setting the allograft T cell dose of 1x10(5) CD3+ cells/kg. In this setting, 2 patterns of early donor T cell engraftment could be distinguished by day +42: (1) early and complete donor chimerism in the T cell compartment (FDCT) and (2) persistent MCT. FDCT was associated with lower residual host CD8+ T cell counts prior to transplant and aGVHD. With persistent MCT, subsequent development of aGVHD could be predicted by the direction of change in T cell donor chimerism after donor lymphocyte infusion, and no aGVHD occurred until FDCT was established. MCT did not affect recovery of donor T cell counts. These observations suggest that the relative number and alloreactivity of donor and host T cells are more important than the absolute allograft T cell dose in determining donor engraftment and aGVHD after RIST.


Subject(s)
Graft Survival/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/methods , Lymphocyte Transfusion/methods , T-Lymphocytes/physiology , Adult , Aged , Breast Neoplasms/therapy , CD3 Complex/analysis , CD8-Positive T-Lymphocytes/cytology , Female , Hematologic Neoplasms/therapy , Humans , Lymphocyte Count , Male , Middle Aged , T-Lymphocytes/cytology , Transplantation Chimera , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...