Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943334

ABSTRACT

BRCA1/2 proteins function in genome stability by promoting repair of double-stranded DNA breaks through homologous recombination and by protecting stalled replication forks from nucleolytic degradation. In BRCA1/2-deficient cancer cells, extensively degraded replication forks can be rescued through distinct fork recovery mechanisms that also promote cell survival. Here, we identified a novel pathway mediated by the E3 ubiquitin ligase RAD18, the E2-conjugating enzyme UBC13, the recombination factor PALB2, the E3 ubiquitin ligase RNF168 and PCNA ubiquitination that promotes fork recovery in BRCA1- but not BRCA2-deficient cells. We show that this pathway does not promote fork recovery by preventing replication fork reversal and degradation in BRCA1-deficient cells. We propose a mechanism whereby the RAD18-UBC13-PALB2-RNF168 axis facilitates resumption of DNA synthesis by promoting re-annealing of the complementary single-stranded template strands of the extensively degraded forks, thereby allowing re-establishment of a functional replication fork. We also provide preliminary evidence for the potential clinical relevance of this novel fork recovery pathway in BRCA1-mutated cancers, as RAD18 is over-expressed in BRCA1-deficient cancers, and RAD18 loss compromises cell viability in BRCA1-deficient cancer cells.

2.
Nat Rev Cancer ; 23(1): 6-24, 2023 01.
Article in English | MEDLINE | ID: mdl-36323800

ABSTRACT

High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.


Subject(s)
DNA-Directed DNA Polymerase , Neoplasms , Humans , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA Repair , DNA Replication , DNA/genetics , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics
3.
Mol Cancer Res ; 20(2): 265-279, 2022 02.
Article in English | MEDLINE | ID: mdl-34670865

ABSTRACT

Over 80% of women with high-grade serous ovarian cancer (HGSOC) develop tumor resistance to chemotherapy and die of their disease. There are currently no FDA-approved agents to improve sensitivity to first-line platinum- and taxane-based chemotherapy or to PARP inhibitors. Here, we tested the hypothesis that expression of growth arrest-specific 6 (GAS6), the ligand of receptor tyrosine kinase AXL, is associated with chemotherapy response and that sequestration of GAS6 with AVB-S6-500 (AVB-500) could improve tumor response to chemotherapy and PARP inhibitors. We found that GAS6 levels in patient tumor and serum samples collected before chemotherapy correlated with ovarian cancer chemoresponse and patient survival. Compared with chemotherapy alone, AVB-500 plus carboplatin and/or paclitaxel led to decreased ovarian cancer-cell survival in vitro and tumor burden in vivo. Cells treated with AVB-500 plus carboplatin had more DNA damage, slower DNA replication fork progression, and fewer RAD51 foci than cells treated with carboplatin alone, indicating AVB-500 impaired homologous recombination (HR). Finally, treatment with the PARP inhibitor olaparib plus AVB-500 led to decreased ovarian cancer-cell survival in vitro and less tumor burden in vivo. Importantly, this effect was seen in HR-proficient and HR-deficient ovarian cancer cells. Collectively, our findings suggest that GAS6 levels could be used to predict response to carboplatin and AVB-500 could be used to treat platinum-resistant, HR-proficient HGSOC. IMPLICATIONS: GAS6/AXL is a novel target to sensitize ovarian cancers to carboplatin and olaparib. Additionally, GAS6 levels can be associated with response to carboplatin treatment.


Subject(s)
DNA Damage/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Female , Humans , Mice , Neoplasm Grading , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
4.
Mol Cell ; 81(19): 4026-4040.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624216

ABSTRACT

PRIMPOL repriming allows DNA replication to skip DNA lesions, leading to ssDNA gaps. These gaps must be filled to preserve genome stability. Using a DNA fiber approach to directly monitor gap filling, we studied the post-replicative mechanisms that fill the ssDNA gaps generated in cisplatin-treated cells upon increased PRIMPOL expression or when replication fork reversal is defective because of SMARCAL1 inactivation or PARP inhibition. We found that a mechanism dependent on the E3 ubiquitin ligase RAD18, PCNA monoubiquitination, and the REV1 and POLζ translesion synthesis polymerases promotes gap filling in G2. The E2-conjugating enzyme UBC13, the RAD51 recombinase, and REV1-POLζ are instead responsible for gap filling in S, suggesting that temporally distinct pathways of gap filling operate throughout the cell cycle. Furthermore, we found that BRCA1 and BRCA2 promote gap filling by limiting MRE11 activity and that simultaneously targeting fork reversal and gap filling enhances chemosensitivity in BRCA-deficient cells.


Subject(s)
DNA Breaks, Single-Stranded , DNA Primase/metabolism , DNA Repair , DNA Replication , DNA, Neoplasm/biosynthesis , DNA-Directed DNA Polymerase/metabolism , G2 Phase , Multifunctional Enzymes/metabolism , Neoplasms/metabolism , S Phase , Antineoplastic Agents/pharmacology , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Line, Tumor , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Primase/genetics , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , Genomic Instability , HEK293 Cells , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Multifunctional Enzymes/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Time Factors , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Gynecol Oncol ; 162(1): 163-172, 2021 07.
Article in English | MEDLINE | ID: mdl-33867143

ABSTRACT

OBJECTIVE: Poly ADP ribose polymerase inhibitors (PARPi) are most effective in BRCA1/2 mutated ovarian tumors. Better treatments are needed for homologous recombination HR-proficient cancer, including CCNE1 amplified subtypes. We have shown that histone deacetylase inhibitors (HDACi) sensitize HR-proficient ovarian cancer to PARPi. In this study, we provide complementary preclinical data for an investigator-initiated phase 1/2 clinical trial of the combination of olaparib and entinostat in recurrent, HR-proficient ovarian cancer. METHODS: We assessed the in vitro effects of the combination of olaparib and entinostat in SKOV-3, OVCAR-3 and primary cells derived from CCNE1 amplified high grade serous ovarian cancer (HGSOC) patients. We then tested the combination in a SKOV-3 xenograft model and in a patient-derived xenograft (PDX) model. RESULTS: Entinostat potentiates the effect of olaparib in reducing cell viability and clonogenicity of HR-proficient ovarian cancer cells. The combination reduces peritoneal metastases in a SKOV-3 xenograft model and prolongs survival in a CCNE1 amplified HR-proficient PDX model. Entinostat also enhances olaparib-induced DNA damage. Further, entinostat decreases BRCA1, a key HR repair protein, associated with decreased Ki-67, a proliferation marker, and increased cleaved PARP, a marker of apoptosis. Finally, entinostat perturbs replication fork progression, which increases genome instability. CONCLUSION: Entinostat inhibits HR repair by reducing BRCA1 expression and stalling replication fork progression, leading to irreparable DNA damage and ultimate cell death. This work provides preclinical support for the clinical trial of the combination of olaparib and entinostat in HR-proficient ovarian cancer and suggests potential benefit even for CCNE1 amplified subtypes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzamides/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pyridines/pharmacology , Animals , BRCA1 Protein/antagonists & inhibitors , BRCA1 Protein/biosynthesis , BRCA1 Protein/genetics , Benzamides/administration & dosage , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , DNA Damage , DNA Replication/drug effects , Drug Synergism , Female , Histone Deacetylase Inhibitors/administration & dosage , Homologous Recombination , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/genetics , Peritoneal Neoplasms/prevention & control , Peritoneal Neoplasms/secondary , Phthalazines/administration & dosage , Piperazines/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Pyridines/administration & dosage , Random Allocation , Xenograft Model Antitumor Assays
6.
Mol Cell ; 81(4): 649-658, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33515486

ABSTRACT

Accurate DNA replication is constantly threatened by DNA lesions arising from endogenous and exogenous sources. Specialized DNA replication stress response pathways ensure replication fork progression in the presence of DNA lesions with minimal delay in fork elongation. These pathways broadly include translesion DNA synthesis, template switching, and replication fork repriming. Here, we discuss recent advances toward our understanding of the mechanisms that regulate the fine-tuned balance between these different replication stress response pathways. We also discuss the molecular pathways required to fill single-stranded DNA gaps that accumulate throughout the genome after repriming and the biological consequences of using repriming instead of other DNA damage tolerance pathways on genome integrity and cell fitness.


Subject(s)
DNA Breaks, Single-Stranded , DNA Repair , DNA Replication , DNA, Single-Stranded/metabolism , Genomic Instability , Animals , DNA, Single-Stranded/genetics , Humans
7.
Crit Rev Biochem Mol Biol ; 56(1): 17-30, 2021 02.
Article in English | MEDLINE | ID: mdl-33179522

ABSTRACT

DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.


Subject(s)
DNA Damage/genetics , DNA Primase/genetics , DNA Primase/metabolism , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Cell Nucleus/metabolism , Cell Survival/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , DNA Primase/chemistry , DNA-Directed DNA Polymerase/chemistry , Gene Knockdown Techniques , Genomic Instability , Humans , Mitochondria/metabolism , Multifunctional Enzymes/chemistry
8.
Mol Cell ; 77(3): 461-474.e9, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31676232

ABSTRACT

Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.


Subject(s)
DNA Primase/metabolism , DNA Replication/drug effects , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , DNA/genetics , DNA Damage/genetics , DNA Damage/physiology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Primase/physiology , DNA Replication/genetics , DNA Replication/physiology , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/physiology , HEK293 Cells , Humans , Multifunctional Enzymes/physiology , Ubiquitin-Protein Ligases/genetics
9.
Cell Rep ; 22(8): 2006-2015, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466729

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by a truncated lamin A protein (progerin) that drives cellular and organismal decline. HGPS patient-derived fibroblasts accumulate genomic instability, but its underlying mechanisms and contribution to disease remain poorly understood. Here, we show that progerin-induced replication stress (RS) drives genomic instability by eliciting replication fork (RF) stalling and nuclease-mediated degradation. Rampant RS is accompanied by upregulation of the cGAS/STING cytosolic DNA sensing pathway and activation of a robust STAT1-regulated interferon (IFN)-like response. Reducing RS and the IFN-like response, especially with calcitriol, improves the fitness of progeria cells and increases the efficiency of cellular reprogramming. Importantly, other compounds that improve HGPS phenotypes reduce RS and the IFN-like response. Our study reveals mechanisms underlying progerin toxicity, including RS-induced genomic instability and activation of IFN-like responses, and their relevance for cellular decline in HGPS.


Subject(s)
DNA Replication , Interferons/metabolism , Lamin Type A/metabolism , Stress, Physiological , Animals , Calcitriol/pharmacology , Cytosol/metabolism , DNA/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Mice , Phenotype , Progeria/metabolism , Receptors, Pattern Recognition/metabolism , STAT1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...