Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Immunol ; 15: 1353903, 2024.
Article in English | MEDLINE | ID: mdl-38799469

ABSTRACT

Introduction: The global healthcare burden of COVID-19 pandemic has been unprecedented with a high mortality. Metabolomics, a powerful technique, has been increasingly utilized to study the host response to infections and to understand the progression of multi-system disorders such as COVID-19. Analysis of the host metabolites in response to SARS-CoV-2 infection can provide a snapshot of the endogenous metabolic landscape of the host and its role in shaping the interaction with SARS-CoV-2. Disease severity and consequently the clinical outcomes may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. Hence, the host metabolome can help predict potential clinical risks and outcomes. Methods: In this prospective study, using a targeted metabolomics approach, we studied the metabolic signature in 154 COVID-19 patients (males=138, age range 48-69 yrs) and related it to disease severity and mortality. Blood plasma concentrations of metabolites were quantified through LC-MS using MxP Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical classes including distinct classes of lipids and small organic molecules. We then employed Kaplan-Meier survival analysis to investigate the correlation between various metabolic markers, disease severity and patient outcomes. Results: A comparison of survival outcomes between individuals with high levels of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine, SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and those with low levels revealed statistically significant differences in survival outcomes. We further used four key metabolic markers (tryptophan, kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a COVID-19 mortality risk model through the application of multiple machine-learning methods. Conclusions: Metabolomics analysis revealed distinct metabolic signatures among different severity groups, reflecting discernible alterations in amino acid levels and perturbations in tryptophan metabolism. Notably, critical patients exhibited higher levels of short chain acylcarnitines, concomitant with higher concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors. Conversely, levels of 3-methylhistidine were lower in this context.


Subject(s)
COVID-19 , Metabolomics , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/mortality , COVID-19/blood , COVID-19/metabolism , Male , Middle Aged , Female , Aged , Metabolomics/methods , Prospective Studies , Metabolome , Biomarkers/blood , Tryptophan/metabolism , Tryptophan/blood , Survival Analysis
2.
Front Immunol ; 14: 1146443, 2023.
Article in English | MEDLINE | ID: mdl-37122708

ABSTRACT

Background: The cross-protective nature of Bacillus Calmette-Guerin (BCG) vaccine against SARS-CoV-2 virus was previously suggested, however its effect in COVID-19 patients with type 2 diabetes (T2D) and the underlying metabolic pathways has not been addressed. This study aims to investigate the difference in the metabolomic patterns of type 2 diabetic patients with BCG vaccination showing different severity levels of COVID-19 infection. Methods: Sixty-seven COVID-19 patients were categorized into diabetic and non-diabetic individuals who had been previously vaccinated or not with BCG vaccination. Targeted metabolomics were performed from serum samples from all patients using tandem mass spectrometry. Statistical analysis included multivariate and univariate models. Results: Data suggested that while BCG vaccination may provide protection for individuals who do not have diabetes, it appears to be linked to more severe COVID-19 symptoms in T2D patients (p = 0.02). Comparing the metabolic signature of BCG vaccinated T2D individuals to non-vaccinated counterparts revealed that amino acid (sarcosine), cholesterol esters (CE 20:0, 20:1, 22:2), carboxylic acid (Aconitic acid) were enriched in BCG vaccinated T2D patients, whereas spermidine, glycosylceramides (Hex3Cer(d18:1_22:0), Hex2Cer(d18:1/22:0), HexCer(d18:1/26:1), Hex2Cer(d18:1/24:0), HexCer(d18:1/22:0) were higher in BCG vaccinated non- T2D patients. Furthermore, data indicated a decrease in sarcosine synthesis from glycine and choline and increase in spermidine synthesis in the BCG vaccinated cohort in T2D and non-T2D groups, respectively. Conclusion: This pilot study suggests increased severity of COVID-19 in BCG vaccinated T2D patients, which was marked by decreased sarcosine synthesis, perhaps via lower sarcosine-mediated removal of viral antigens.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , BCG Vaccine , Retrospective Studies , SARS-CoV-2 , COVID-19 Vaccines , Pilot Projects , Sarcosine , Spermidine , Vaccination/methods
3.
Mol Immunol ; 152: 172-182, 2022 12.
Article in English | MEDLINE | ID: mdl-36371813

ABSTRACT

Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Antibody-Dependent Enhancement , Complement C1q , Antigen-Antibody Complex , Antibodies, Viral
4.
Mediterr J Hematol Infect Dis ; 14(1): e2022076, 2022.
Article in English | MEDLINE | ID: mdl-36425144

ABSTRACT

Background and Objectives: The heterogeneity of the coronavirus disease of 2019 (COVID-19) lies within its diverse symptoms and severity, ranging from mild to lethal. Acute respiratory distress syndrome (ARDS) is a leading cause of mortality in COVID-19 patients, characterized by a hyper cytokine storm. Autoimmunity is proposed to occur as a result of COVID-19, given the high similarity of the immune responses observed in COVID-19 and autoimmune diseases. Here, we investigate the level of autoimmune antibodies in COVID-19 patients with different severities. Results: Initial screening for antinuclear antibodies (ANA) IgG using ELISA revealed that 1.58% (2/126) and 4% (5/126) of intensive care unit (ICU) COVID-19 cases expressed strong and moderate ANA levels, respectively. An additional sample was positive with immunofluorescence assays (IFA) screening. However, all the non-ICU cases (n=273) were ANA negative using both assays. Samples positive for ANA were further confirmed with large-scale autoantibody screening by phage immunoprecipitation-sequencing (PhIP-Seq). The majority of the ANA-positive samples showed "speckled" ANA pattern by microscopy and revealed autoantibody specificities that targeted proteins involved in intracellular signal transduction, metabolism, apoptotic processes, and cell death by PhIP-Seq; further denoting reactivity to nuclear and cytoplasmic antigens. Conclusion: Our results further support the notion of routine screening for autoimmune responses in COVID-19 patients, which might help improve disease prognosis and patient management. Further, results provide compelling evidence that ANA-positive individuals should be excluded from being donors for convalescent plasma therapy in the context of COVID-19.

5.
Front Cell Infect Microbiol ; 12: 929689, 2022.
Article in English | MEDLINE | ID: mdl-35937683

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection currently remains one of the biggest global challenges that can lead to acute respiratory distress syndrome (CARDS) in severe cases. In line with this, prior pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognized, despite its relatively high prevalence and its association with reduced quality of life. In this study, we used a metabolomics analysis to identify potential biomarkers that aid in the prognosis of COVID-19 morbidity and mortality in post-TB infected patients. This analysis involved blood samples from 155 SARS-CoV-2 infected adults, of which 23 had a previous diagnosis of TB (post-TB), while 132 did not have a prior or current TB infection. Our analysis indicated that the vast majority (~92%) of post-TB individuals showed severe SARS-CoV-2 infection, required intensive oxygen support with a significantly high mortality rate (52.2%). Amongst individuals with severe COVID-19 symptoms, we report a significant decline in the levels of amino acids, notably the branched chains amino acids (BCAAs), more so in the post-TB cohort (FDR <= 0.05) in comparison to mild and asymptomatic cases. Indeed, we identified betaine and BCAAs as potential prognostic metabolic biomarkers of severity and mortality, respectively, in COVID-19 patients who have been exposed to TB. Moreover, we identified serum alanine as an important metabolite at the interface of severity and mortality. Hence, our data associated COVID-19 mortality and morbidity with a long-term metabolically driven consequence of TB infection. In summary, our study provides evidence for a higher mortality rate among COVID-19 infection patients who have history of prior TB infection diagnosis, which mandates validation in larger population cohorts.


Subject(s)
COVID-19 , Tuberculosis , Adult , Alanine , Humans , Morbidity , Prognosis , Quality of Life , SARS-CoV-2 , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/epidemiology
6.
Vaccines (Basel) ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35891199

ABSTRACT

Waning immunity following administration of mRNA-based COVID-19 vaccines remains a concern for many health systems. We undertook a study to determine if recent reports of waning for severe disease could have been attributed to design-related bias by conducting a study only among those detected with a first SARS-CoV-2 infection. We used a matched case-control study design with the study base being all individuals with first infection with SARS-CoV-2 reported in the State of Qatar between 1 January 2021 and 20 February 2022. Cases were those detected with first SARS-CoV-2 infection requiring intensive care (hard outcome), while controls were those detected with first SARS-CoV-2 infection who recovered without the need for intensive care. Cases and controls were matched in a 1:30 ratio for the calendar month of infection and the comorbidity category. Duration and magnitude of conditional vaccine effectiveness against requiring intensive care and the number needed to vaccinate (NNV) to prevent one more case of COVID-19 requiring intensive care was estimated for the mRNA (BNT162b2/mRNA-1273) vaccines. Conditional vaccine effectiveness against requiring intensive care was 59% (95% confidence interval (CI), 50 to 76) between the first and second dose, and strengthened to 89% (95% CI, 85 to 92) between the second dose and 4 months post the second dose in persons who received a primary course of the vaccine. There was no waning of vaccine effectiveness in the period from 4 to 6, 6 to 9, and 9 to 12 months after the second dose. This study demonstrates that, contrary to mainstream reports using hierarchical measures of effectiveness, conditional vaccine effectiveness against requiring intensive care remains robust till at least 12 months after the second dose of mRNA-based vaccines.

7.
Front Immunol ; 12: 707159, 2021.
Article in English | MEDLINE | ID: mdl-34966381

ABSTRACT

Coronavirus disease-2019 (COVID-19) was declared as a pandemic by WHO in March 2020. SARS-CoV-2 causes a wide range of illness from asymptomatic to life-threatening. There is an essential need to identify biomarkers to predict disease severity and mortality during the earlier stages of the disease, aiding treatment and allocation of resources to improve survival. The aim of this study was to identify at the time of SARS-COV-2 infection patients at high risk of developing severe disease associated with low survival using blood parameters, including inflammation and coagulation mediators, vital signs, and pre-existing comorbidities. This cohort included 89 multi-ethnic COVID-19 patients recruited between July 14th and October 20th 2020 in Doha, Qatar. According to clinical severity, patients were grouped into severe (n=33), mild (n=33) and asymptomatic (n=23). Common routine tests such as complete blood count (CBC), glucose, electrolytes, liver and kidney function parameters and markers of inflammation, thrombosis and endothelial dysfunction including complement component split product C5a, Interleukin-6, ferritin and C-reactive protein were measured at the time COVID-19 infection was confirmed. Correlation tests suggest that C5a is a predictive marker of disease severity and mortality, in addition to 40 biological and physiological parameters that were found statistically significant between survivors and non-survivors. Survival analysis showed that high C5a levels, hypoalbuminemia, lymphopenia, elevated procalcitonin, neutrophilic leukocytosis, acute anemia along with increased acute kidney and hepatocellular injury markers were associated with a higher risk of death in COVID-19 patients. Altogether, we created a prognostic classification model, the CAL model (C5a, Albumin, and Lymphocyte count) to predict severity with significant accuracy. Stratification of patients using the CAL model could help in the identification of patients likely to develop severe symptoms in advance so that treatments can be targeted accordingly.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Complement C5a/analysis , Patient Acuity , Adult , Aged , COVID-19/complications , Cohort Studies , Female , Humans , Hypoalbuminemia/mortality , Hypoalbuminemia/virology , Lymphocyte Count , Lymphopenia/mortality , Lymphopenia/virology , Male , Middle Aged , Prognosis , Prospective Studies , Qatar , SARS-CoV-2
9.
Comput Struct Biotechnol J ; 19: 2881-2890, 2021.
Article in English | MEDLINE | ID: mdl-34093999

ABSTRACT

HER2-positive breast cancer is one of its most challenging subtypes, forming around 15-25% of the total cases. It is characterized by aggressive behavior and treatment resistance. On the other hand, poly (amidoamine) (PAMAM) dendrimers are widely used in drug delivery systems and gene transfection as carriers. PAMAMs can modulate gene expression and interfere with transactivation of the human epidermal growth factor receptor family members (HER1-4). Nevertheless, the outcome of PAMAMs on HER2-positive breast cancer remains unknown. Thus, in this study, we investigated the anti-cancer effects of different generations of PAMAM dendrimers (G4 and G6) and the outcome of their surface chemistries (cationic, neutral, and anionic) on HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data showed that PAMAM dendrimers, mainly cationic types, significantly reduce cell viability in a dose-dependent manner. More significantly, PAMAMs induce substantial cell apoptosis, accompanied by the up-regulation of apoptotic markers (Bax, Caspases-3, 8 and 9) in addition to down-regulation of Bcl-2. Moreover, our data pointed out that cationic PAMAMs inhibit colony formation compared to controls and other types of PAMAMs. The molecular pathway analysis of PAMAM exposed cells revealed that PAMAMs enhance JNK1/2/3 expression while blocking ERK1/2, in addition to EGFR1 (HER1) and HER2 activities, which could be the major molecular pathway behind these events. These observed effects were comparable to lapatinib treatment, a clinically used inhibitor of HER1 and 2 receptors phosphorylation. Our findings implicate that PAMAMs may possess important therapeutic effects against HER2-positive breast cancer via JNK1/2/3, ERK1/2, and HER1/2 signalling pathways.

10.
Cancer Immunol Immunother ; 70(8): 2103-2121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33532902

ABSTRACT

Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.


Subject(s)
Cellular Reprogramming/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Carcinogenesis/immunology , Cell Differentiation/immunology , Humans
11.
Semin Cancer Biol ; 72: 146-154, 2021 07.
Article in English | MEDLINE | ID: mdl-31883913

ABSTRACT

Breast cancer was traditionally not considered a particularly immunogenic tumor. However, recent developments have shown that some aggressive triple-negative breast cancers are immunogenic, exhibit a resistance to chemotherapy and have a poor prognosis. These cancers have been shown to express molecules identified as targets for immunotherapy. Despite the advances, the challenges are many, and include identifying the patients that may benefit from immunotherapy. The best methods to analyze these samples and to evaluate immunogenicity are also major challenges. Therefore, the most accurate and reliable assessment of immune cells as potential targets is one of the most important aims in the current research in breast immunotherapy. In the present review, we briefly discuss the mechanisms of the regulation of checkpoint inhibitors (PD-1/PD-L1) in breast cancer and explore the predictive aspects in the PD-L1 testing.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Breast Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Molecular Targeted Therapy/methods , Tumor Microenvironment , B7-H1 Antigen/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Female , Humans , Prognosis
12.
Front Med (Lausanne) ; 8: 788687, 2021.
Article in English | MEDLINE | ID: mdl-35083246

ABSTRACT

Introduction: Increased COVID-19 disease severity is higher among patients with type 2 diabetes mellitus and hypertension. However, the metabolic pathways underlying this association are not fully characterized. This study aims to identify the metabolic signature associated with increased COVID-19 severity in patients with diabetes mellitus and hypertension. Methods: One hundred and fifteen COVID-19 patients were divided based on disease severity, diabetes status, and hypertension status. Targeted metabolomics of serum samples from all patients was performed using tandem mass spectrometry followed by multivariate and univariate models. Results: Reduced levels of various triacylglycerols were observed with increased disease severity in the diabetic patients, including those containing palmitic (C16:0), docosapentaenoic (C22:5, DPA), and docosahexaenoic (C22:6, DHA) acids (FDR < 0.01). Functional enrichment analysis revealed triacylglycerols as the pathway exhibiting the most significant changes in severe COVID-19 in diabetic patients (FDR = 7.1 × 10-27). Similarly, reduced levels of various triacylglycerols were also observed in hypertensive patients corresponding with increased disease severity, including those containing palmitic, oleic (C18:1), and docosahexaenoic acids. Functional enrichment analysis revealed long-chain polyunsaturated fatty acids (n-3 and n-6) as the pathway exhibiting the most significant changes with increased disease severity in hypertensive patients (FDR = 0.07). Conclusions: Reduced levels of triacylglycerols containing specific long-chain unsaturated, monounsaturated, and polyunsaturated fatty acids are associated with increased COVID-19 severity in diabetic and hypertensive patients, offering potential novel diagnostic and therapeutic targets.

13.
Eur J Med Chem ; 187: 111954, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31838326

ABSTRACT

Great strides have been made in triple negative breast cancer (TNBC) treatment, which represents 20% of total predicted annual US breast cancer (BC) cases. Despite the development of several therapeutics, TNBC patients have poor overall survival rate, compared to other BC patients, justifying the urgent need to discover new entities for use to control TNBC. Chalcones are important natural products with diverse bioactivities including anticancer effects. This study aimed to design, synthesize and validate novel chalcone leads as potential therapies for TNBC. Fourteen novel chalcone analogs were designed and synthesized comprising alicyclic amines (pyrrolidine, morpholine and piperidine) or nitrogen mustard (Bis-(2-chloroethyl) amine) substituents. Among them, compound 14((E)-3-(4-(Bis(2-chloroethyl) amino) phenyl)-1-(3-methoxyphenyl) prop-2-en-1-one) was identified as the most effective against TNBC and other BC phenotypes, with anti-proliferative IC50 values ranging between 3.94 and 9.22 µM against the TNBC cell lines MDA-MB-231 and MDA-MB-468, as well as against the estrogen positive MCF-7 cell line. Chalcone 14 effectively suppressed the colony formation capacity of MDA-MB-231, MDA-MB-468, and MCF-7 cell lines at 5 and 10 µM treatment concentrations. Furthermore, compound 14 has significantly inhibited cell invasion and migration of MDA-MB-231 and MCF-7 BC cell lines. Additionally, compound 14 had significantly promoted apoptosis by upregulating BAX and downregulating Bcl-2 proteins. Compound 14 induced significant cell cycle arrest of TNBC cells at the G2/M phase. It also induced a reversal of Epithelial Mesenchymal Transition (EMT) by upregulating the epithelial markers E-cadherin and Pan-cadherin and downregulating FAK. Furthermore, it had dramatically diminished new vessel formation (vasculogenesis) in chick chorioallantoic membrane (CAM) model by 60.20 ± 8.47%. Chalcone 14 inhibited 46.41 ± 0.71% of the TNBC MAD-MB-231 cells growth in a nude mouse orthotopic xenograft model in comparison with vehicle control treated animals. Collectively, this study results propose chalcone 14 as a promising lead molecule for the control of TNBC as well as other breast cancer phenotypes.


Subject(s)
Chalcone/pharmacology , Drug Design , Nitrogen/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Nitrogen/chemistry , Structure-Activity Relationship , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured
16.
Viruses ; 11(8)2019 08 19.
Article in English | MEDLINE | ID: mdl-31430946

ABSTRACT

For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/virology , Virus Diseases/immunology , Virus Diseases/virology , Animals , Autoimmune Diseases/genetics , Autoimmunity , Humans , Virus Diseases/genetics , Virus Physiological Phenomena , Viruses/genetics
17.
Bosn J Basic Med Sci ; 19(3): 227-233, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-30915922

ABSTRACT

The treatment of several solid and hematologic malignancies with immune checkpoint inhibitors (against programmed death receptor-1/ligand-1 [PD-1/PD-L1]) has dramatically changed the cancer treatment paradigm. However, no checkpoint inhibitors were previously approved for the treatment of triple-negative breast cancer (TNBC), a difficult-to-treat disease with a high unmet therapeutic need. Based on IMpassion130 clinical trial (NCT02425891), the Food and Drug Administration (FDA) has recently granted an accelerated approval for atezolizumab (TECENTRIQ®), a monoclonal antibody drug targeting PD-L1, plus chemotherapy (Abraxane; nab®-Paclitaxel) for the treatment of adults with PD-L1-positive, unresectable, locally advanced or metastatic TNBC. The FDA has also approved the Ventana diagnostic antibody SP142 as a companion test for selecting TNBC patients for treatment with atezolizumab. In the present review, we briefly discuss the importance of this breakthrough as the first cancer immunotherapy regimen to be approved for the management of breast cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Combined Modality Therapy/methods , Genes, cdc/drug effects , Immunotherapy/methods , Triple Negative Breast Neoplasms/therapy , Antibodies, Monoclonal/therapeutic use , Female , Humans , Triple Negative Breast Neoplasms/drug therapy
18.
Front Oncol ; 8: 111, 2018.
Article in English | MEDLINE | ID: mdl-29765906

ABSTRACT

Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein-Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial-mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by ß-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT.

19.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29311234

ABSTRACT

Mycoplasma bovis-induced immune suppression is a major obstacle faced by the host for controlling infections. M. bovis impairment of antigen-specific T-cell responses is achieved through inhibiting the proliferation of peripheral blood mononuclear cells (PBMCs). This impairment may contribute to the persistence of M. bovis infection in various sites, including lungs, and its systemic spread to various organs such as joints, with the underlying mechanisms remaining elusive. Here, we elucidated the role of the immune-inhibitory receptor programmed death 1 (PD-1) and its ligand (PD-L1) in M. bovis infection. Flow cytometry (FCM) analyses revealed an upregulation of PD-L1 expression on tracheal and lung epithelial cell lines after M. bovis infection. In addition, we found increased PD-L1 expression on purified lung lavage macrophages following M. bovis infection by FCM and determined its localization by immunofluorescence analysis comparing infected and control lung tissue sections. Moreover, M. bovis infection increased the expression of the PD-1 receptor on total PBMCs and in gated CD4+ and CD8+ T-cell subpopulations. We demonstrated that M. bovis infection induced a significant decrease in CD4+ PD-1INT and CD8+ PD-1INT subsets with intermediate PD-1 expression, which functioned as progenitor pools giving rise to CD4+ PD-1HIGH and CD8+ PD-1HIGH subsets with high PD-1 expression levels. We blocked PD-1 receptors on PBMCs using anti-PD-1 antibody at the beginning of infection, leading to a significant restoration of the proliferation of PBMCs. Taken together, our data indicate a significant involvement of the PD-1/PD-L1 inhibitory pathway during M. bovis infection and its associated immune exhaustion, culminating in impaired host immune responses.


Subject(s)
Cattle Diseases/immunology , Cell Proliferation , Leukocytes, Mononuclear/cytology , Mycoplasma Infections/veterinary , Mycoplasma bovis/physiology , Programmed Cell Death 1 Receptor/immunology , Animals , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Host-Pathogen Interactions , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Lung/immunology , Lung/microbiology , Mycoplasma Infections/genetics , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Mycoplasma bovis/genetics , Programmed Cell Death 1 Receptor/genetics
20.
Cell Adh Migr ; 12(1): 1-4, 2018 01 02.
Article in English | MEDLINE | ID: mdl-28562165

ABSTRACT

Gastric cancer is the fourth most common cancer and the second leading cause of cancer deaths worldwide. Additionally, it is well-known that metastatic cancer disease is a major cause of morbidity and mortality in cancer patients. Several investigations reported that HER-2 (ErbB-2 receptor) and Epstein-Barr virus (EBV) are important etiological factors in human gastric cancer, where either oncogene/oncovirus alone can derive a major event of cancer progression and metastasis via epithelial-mesenchymal transition (EMT). Herein, we discuss, for the first time, the possibility of HER-2/EBV-oncoproteins interaction in human gastric cancer initiation and/or progression.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Receptor, ErbB-2/metabolism , Retroviridae/pathogenicity , Stomach Neoplasms/virology , Carcinogenesis/pathology , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...